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1 Introduction 

With the speed of computers growing rapidly over the last 20 years, they 
have become indispensable in the field of geo-analysis, cartography, images 
processing and many more subjects that have one thing in common: the 
processing of spatial data. Finally with this being not only quite important but 
even the base of certain applications such as computer aided design or 
virtual reality, something has shown up clearly. Existing index structures for 
one or two dimensional data are not sufficient nor in any way efficient for 
saving and processing spatial, multi-dimensional data. 

Among a huge amount of indexing structures there are well-developed, 
efficient forms for saving and accessing (i.e. searching, inserting, deleting) 
one dimensional data of which the binary tree is probably the most common 
and well-known one. But as soon as it comes to data consisting of more than 
one dimension these structures are no longer suitable. Although there are 
quite a few structures for storing spatial data, there is hardly that is to spatial 
data what the binary tree is to one-dimensional data. K-D-B trees for 
example, only work for point data [6] whereas k-d trees [1] as well as quad 
trees [2] do not take paging of memory into consideration and thus show up 
some disadvantages in the matter of efficiency. Cell methods [4] in contrast 
will reach there limits when it comes to extremely dynamic structures with 
changing boundaries. No need to emphasize that this makes up a certain 
problem when dealing with a vast amount of geographical data in 
cartography or highly dynamic structures in the field of virtual reality and 
computer aided design. 

So this is why Antonin Guttman in 1984 finally came up with a completely 
new structure for indexing and processing spatial data, similar to and 
generally based on B-trees. This so called R-tree, standing for region tree, is 
what we will now examine in a little more detail. 
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2 R-tree Index Structure 

2.1 General Structure of an R-tree 
As already mentioned, R-trees are in one or another way quite similar to B-
trees. Like those, R-trees contain all their data or reference to data in their 
leaf-nodes. Furthermore, they have features of a sort of binary tree known as 
AVL-tree, meaning that R-trees are height balanced. That is, the distance to 
the root node is the same for all leaf nodes. This is also the reason for the 
benefits R-trees have in the matter of dynamic indexing. In detail this means 
that all kind of actions like inserting, searching and deleting can be mixed 
without having to reorganize and restructure the spatial tree periodically in 
order to maintain performance. 

The data itself that is to be indexed in the R-tree is represented by its 
minimum bounding rectangle, referred as MBR throughout the rest of the 
text. Leaf-nodes contain the MBR of the data objects they refer to, whereas 
non-leaf nodes are set up with the MBR of all there child’s MBRs. Last but 
not least the root contains the MBR of all objects in the tree. The following 
figure is to illustrate this situation for a simple two-dimensional structure. 

 

Figure 1: Example of a two-dimensional structure and the according R-tree 
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Following these principles, according to Guttman, an R-tree corresponds 
to the following six properties:  

(1) Every leaf node contains between m  and M  index records unless it is 
the root. 

(2) For each index record )identifier-tuple,(I  in a leaf node, I  is the 
smallest rectangle that spatially contains the n-dimensional data object 
represented by the indicated tuple. 

(3) Every non-leaf node has between m  and M  children unless it is the 
root. 

(4) For each entry )pointer-child,(I  in a non-leaf node, I  is the smallest 
rectangle that spatially contains the rectangles in the child node. 

(5) The root node has at least two children unless it is a leaf. 

(6) All leaves appear on the same level. 

 

2.2 Structure of R-tree Nodes 
Very much like a B-tree, R-trees consist of two different kinds of nodes:  
Regular nodes pointing to child nodes and leaf nodes pointing to the indexed 
data itself. 

Regular nodes consist of at least m  but at most M  references  

),( CPI n  

to child nodes, with CP  standing for child pointer and thus being a reference 
to a child node on a lower level of the tree structure. nI  is the n -dimensional 
rectangle forming the MBR of all the child node’s rectangles. 

Leaf nodes in stead contain m  to M  tuples of the form  

),( TIDIn  

where TID  stands for tuple identifier and refers to a tuple of data objects in 
the database. nI  again is an n -dimensional rectangle, this time making up 
the MBR of the referenced data objects. 
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In both cases  

),...,,( 10 nn IIII =  

describes an n -dimensional minimum bounding rectangle of one or more 
objects, where n  is the number of dimensions and iI  is a closed bounded 

interval ],[ ba  describing the extent of the object along dimension i . 

2.3 Parameters m  and M  
For R-trees there are mainly two parameters that highly affect its memory 
consumption as well as the performance concerning insert and delete 
operations. 

The first of these two parameters is M  which is to be the maximum 
number of entries that fit in one node. The second one 

2
Mm ≤  

specifies the minimum number of entries for a single node. Thus the height of 
an R-tree containing N  index records calculates to at most 

⎡ ⎤ 1log −Nm  

with a maximum space utilization of 

M
m  

per node. 

The latter especially shows that a bigger m  will decrease space usage. 
This is quite clear as almost all the space will be consumed by leaf nodes 
containing MBRs of the indexed data objects and only a few ordinary nodes 
containing MBRs of their child nodes. Furthermore m  decisively influences 
that number of occurring underflows when deleting indexed data. 
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M  instead limits the maximum number of entries in a single node an thus 
influences the number of overflows that will happen when performing an 
insert. Furthermore when deciding on M , main and cache memory 
parameters should be taken into consideration as well as the number of 
dimensions which are to be stored. 

Some of these effects will be discussed in chapter 4 when talking about 
the performance of R-trees under different conditions. 
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3 Algorithms on R-trees 

3.1 Motivation 
Just like it is with B-trees and all other kind of trees, the most important idea 
behind R-trees is not to store data but to structure it. In fact, this is why we 
call it a structure and not storage. If it was just to store data there would be 
by far more efficient ways to do so. But what we want when we use R-trees is 
a structured storage that allows us to efficiently search and modify data. And 
this is why we need a good set of algorithms to search an R-tree as well as 
insert, delete and update the indexed data. 

Step by step we will now get to know basic implementations of a few quite 
useful algorithms for search, insert and delete operations on R-trees. 
Furthermore we will concentrate on node-splitting as an answer to over- and 
underflows that might occur when inserting or deleting data from the index. 
As there are quite a few more or less simple ways to deal with this and as 
they differ extremely in the matter of cost we will explain and compare three 
different implementations for this case. Last but not least a few words shall 
also be lost about update and other useful operations which are basically just 
modified version of the above mentioned algorithms. To round all this up a 
little, the formal description of each algorithm is followed by concrete 
application of the referenced algorithm to sample data at the end of each 
chapter. 

3.2 Searching 

3.2.1 Algorithm Description 

The basic search algorithm on R-trees, similar to search operations on B-
trees, traverses the tree from the root to its leaf nodes. However, as there is 
no rule that prohibits overlapping rectangles within the same node of an R-
tree the search algorithm may need to search more than just one subtree of a 
node visited.  This is the reason why it is not possible to give a guarantee on 
good worst-case performance, although this should seldom be the case due 
to update algorithms designed to keep the number of overlapping regions 
small. But now let’s take a closer look at the algorithm itself. 

Let T  be the root of a given R-tree. Be S  the search rectangle, the 
algorithm is intended to identify all index records whose rectangles overlap 
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S . Denoting an index entry E ’s rectangle by IE.  and its TID  or CP  by PE. , 
the algorithm looks like this: 

Algorithm SEARCH 

(1) [Search subtrees] If T  is not a leaf, check each entry E  to determine 
whether IE.  overlaps S . For all overlapping entries, invoke SEARCH 
on the tree whose root node is pointed to by PE. . 

(2) [Search leaf node] If T  is a leaf, check all entries E  to determine 
whether IE.  overlaps S . If so, E  is a qualifying record. 

 

3.2.2 Example 

In order to make things a little clearer we will now go through the algorithm 
step by step as we apply it to 2-dimensional sample data represented by the 
following spatial structure, where all the inner rectangles are MBRs of objects 
in the database and all other rectangles are MBRs of inner rectangles. 

 

Figure 2: Geometric structure of 2-dimensional sample data 

This structure is logically equivalent to an R-tree with the inner rectangles 
being leaf nodes and all other rectangles making up regular nodes on 
different levels of the tree according to their level in the above visualization. 
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Be 3=M  and 1=m , this data finally leads to the following R-tree structure 
with nodes named by the rectangles they point to. 

 

Figure 3: Exemplary R-tree for the given sample data 

Right now we will use the search algorithm presented in the last chapter to 
find all data objects overlapping an object described by the hatched MBR in 
the following diagram. 

 

Figure 4: Sample search object within the given data 
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the search object, which means that search in the subtree of R2 has come to 
an end without bringing up any results. Now the algorithm will continue with 
R1’s child node. Rectangles R11 and R13 are found to overlap the search 
object and their subtrees therefore are going to be searched. Finally search 
will return nodes R112, R113, R131, R132 and R133 overlapping the search 
rectangle and therefore the objects referenced by those rectangles 
respectively by the tuples containing those rectangles make up the result of 
our search. At last, the following graph is meant to visualize the path of this 
search through the tree structure. 

 

Figure 5: Search path for the given search object 

3.3 Insertion 

3.3.1 Algorithm Description 

Being able to search an R-tree, now let’s take a closer look on ways to alter 
the indexed data. A good start to do so might be to discuss an algorithm that 
can be used for inserting new data into the tree. 

Same as the search algorithm, insert operations on R-trees are quite 
similar to their equivalent algorithms on B-trees. Basically the insert algorithm 
consists of three parts. First of all a modified search algorithm will choose an 
adequate node to insert the new data into. Having located that node, the 
main part is to insert the new object into this node, followed by a check if any 
restrictions for the maximum number of entries in a node are violated and if 
necessary splitting the node according to these restrictions calling the 
SPLITNODE algorithm (see 3.5). Finally the last part is to adjust all 
preceding nodes according to the new extent of the MBR of the changed 
node(s). 

In detail the algorithm for inserting a new entry E  into a given R-tree looks 
like this: 
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Algorithm INSERT 

(1) [Find position for a new record] Invoke CHOOSELEAF to select a leaf 
node L  in which to place E . 

(2) [Add record to leaf node] If L  has room for another entry, install E . 
Otherwise invoke SPLITNODE to obtain L  and LL  containing E  and 
all the old entries of L . 

(3) [Propagate changes upward] Invoke ADJUSTTREE on L , also 
passing LL  if a split was performed. 

(4) [Grow tree taller] If node split propagation caused the root to split, 
create a new root whose children are the two resulting nodes. 

 

Algorithm CHOOSELEAF is to search a leaf node L  in which to place the 
new index entry E . 

Algorithm CHOOSELEAF 

(1) [Initialize] Set N  to be the root node. 

(2) [Leaf check] If N  is a leaf, return N . 

(3) [Choose subtree] If N  is not a leaf, let F  be the entry in N  whose 
rectangle IF.  needs least enlargement to include IE. . Resolve ties by 
choosing the entry with the rectangle of smallest area. 

(4) [Descend until a leaf is reached] Set N  to be the child node pointed to 
by PF.  and repeat from (2). 

 

Finally algorithm ADJUSTTREE is to ascend from the changed leaf node 
L  to the root, adjusting all MBRs according to the altered MBR of the L  as 
well as to propagate the changes of a node split if one occurred. 
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Algorithm ADJUSTTREE 

(1) [Initialize] Set LN = . If L  was split previously, set NN  to be the 
resulting second node. 

(2) [Check if done] If N  is the root, stop. 

(3) [Adjust covering rectangle in parent entry] Let P  be the parent node of 
N , and let NE  be N ’s entry in P . Adjust NE  so that I tightly encloses 

all entry rectangles in N . 

(4) [Propagate node split upward] If N  has a partner NN  resulting from 
an earlier split, create a new entry NNE  with PENN .  pointing to NN  and 

IENN .  enclosing all rectangles in NN . Add NNE  to P  if there is room. 

Otherwise, invoke SPLITNODE to produce P  and PP  containing NNE  
and all P ’s old entries. 

(5) [Move up to next level] Set PN =  and set PPNN =  if a split occurred. 
Repeat from (2). 

 

3.3.2 Example 

As we already did when introducing a search algorithm on R-trees, let’s again 
walk through a concrete example of an insert operation step by step and see 
what happens to our sample R-tree structure already used in chapter 3.2.2.  

The following figure shows our sample structure as well as a hatched 
rectangle being the MBR of an object in the database that is to be inserted 
into the given index. All other parameters of the given sample structure 
remain the same as in chapter 3.2.2. 
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Figure 6: Sample object to insert into a given R-tree 

Calling the INSERT algorithm now will first of all lead to a call to 
CHOOSELEAF. This algorithm traverses the tree from the root to its leafs 
and finally identifies R11 as the rectangle which would need the least 
extension to contain the object we’d like to insert. The algorithms path 
through the tree is shown by the following figure. 

 

Figure 7: Path of CHOOSELEAF algorithm for inserting the sample object 

Having now identified the place where to insert the new object into the 
tree, the main part of the insert algorithm will find that there is not enough 
space left to insert the new object as a leaf of R11. Thus SPLITNODE is 
called on R11 to split it into two nodes R11 and R11’ with the resulting node’s 
MBRs being minimal. This process of splitting the node is illustrated in the 
figure below. 
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Figure 8: Splitting of the chosen leaf 

Now, as nodes have been split and the new object has been inserted into 
the tree, a call to ADJUSTTREE is made to ensure that all nodes preceding 
the node that’s been changed are accordingly changed themselves. In this 
case, it means that the algorithm tries to insert the new node R11’ into R1, 
which, as you can see, is already at its limit. So again SPLITNODE is called 
and R1 split up into R1 and R1’ with R1 containing R11’ and R1’ containing 
R11. As there is still space left in the root the resulting call to ADJUSTTREE 
this time just inserts R1’ into the root. No further split is required and 
therefore no new root will be created. Finally we will find the resulting tree 
containing the new object looking as shown below.  

 

Figure 9: R-tree after insert operation 

Last but not least the following figure shows the geometric structure 
represented by the altered tree. 
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Figure 10: Geometric structure represented by the altered R-tree 

3.4 Deletion 

3.4.1 Algorithm Description 

Having discussed search an insert operations on R-tress we will now focus 
on the third and last basic function a simple R-tree implementation should 
provide. That is the deletion of indexed objects. 

Although the last chapters all started pointing out that R-tree operations 
are quite similar to their corresponding operations on B-trees, this time we 
will at least to some extent miss those similarities. The differences concern 
the treatment of under-full nodes which may occur when deleting objects 
from the index. In B-trees, this matter is being dealt with by just merging two 
or more adjacent nodes. Now on a first quick look, technically, nothing would 
keep you from doing the same when deleting entries in an R-tree. 
Nevertheless Guttmann gives two good reasons why this might not be the 
best approach to deal with underflows and why deleting under-full nodes and 
reinserting their entries may be considered a better solution. The first one is 
that deciding on the delete-reinsert version allows us to re-use the insert 
routine introduced in the chapter before while accomplishing the same thing 
as when simply merging under-full nodes with sibling ones. This argument of 
course can only matter if performance of both implementations is about the 
same. But as Guttmann points out that this will be the case as pages visited 
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during re-insertion are basically the same visited during the preceding search 
and therefore should be in memory already. As a second reason for this 
alternative implementation Guttmann accounts that re-insertions 
incrementally refine the spatial structure of the tree. 

Considering these arguments we will now take a detailed look at the 
delete-reinsert version and leave it to the reader to give it a try and 
implement an algorithm corresponding to the B-tree handling of under-full 
nodes. The algorithm below will remove index record E  from a given R-tree. 

Algorithm DELETE 

(1) [Find node containing record] Invoke FINDLEAF to locate the leaf 
node L  containing E . Stop if the record was not found. 

(2) [Delete record] Remove E  from L . 

(3) [Propagate changes] Invoke CONDENSETREE, passing L . 

(4) [Shorten tree] If the root node has only one child after the tree has 
been adjusted, make the child the new root. 

 

Herein the following algorithm is used to identify the leaf node containing 
index entry E  in an R-tree with root T . 

Algorithm FINDLEAF 

(1) [Search subtrees] If T  is not a leaf, check each entry F  in T  to 
determine if IF.  overlaps IE. . For each such entry invoke FINDLEAF 
on the tree whose root is pointed to by PF.  until E  is found or all 
entries have been checked. 

(2) [Search leaf node for record] If T  is a leaf, check each entry to see if it 
matches E . If E  is found return T . 

 

As underflows may occur when deleting index records, the following 
algorithm will finally eliminate node L  from which an entry has been removed 
if it has too few records and relocate its entries. Furthermore node elimination 
will be propagated upward adjusting all covering rectangles on the way to the 
root if they can be tightened as a result of the split. 
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Algorithm CONDENSETREE 

(1) [Initialize] Set LN = . Set Q , the set of eliminated nodes, to be empty. 

(2) [Find parent entry] If N  is the root, go to (6). Otherwise let P  be the 
parent of N , and let NE  be N ’s entry in P . 

(3) [Eliminate under-full node] If N  has fewer than m  entries, delete NE  

from P  and add N  to set Q . 

(4) [Adjust covering rectangle] If N  has not been eliminated, adjust IEN .  

to tightly contain all entries in N . 

(5) [Move up on level in tree] Set PN =  and repeat from (2). 

(6) [Re-insert orphaned entries] Re-insert all entries of nodes in set Q . 
Entries from eliminated leaf nodes are re-inserted in tree leafs as 
described in algorithm INSERT, but entries from higher-level nodes 
must be placed higher in the tree, so that leafs of their dependent 
subtrees will be on the same level as leafs of the main tree. 

 

3.4.2 Example 

As with the algorithms before we will now again take a look at an exemplary 
delete operation on our sample tree. Nevertheless, to make this example a 
non-trivial one, we will modify our sample structure’s parameters and set 

4=M  and 2=m . The resulting tree will look as shown below with the 
hatched entry R212 being the one to be deleted. 

 

Figure 11: Modified sample tree 

Our initial call to algorithm DELETE on entry R212 will first of all lead to a 
call to FINDLEAF in order to locate the node containing the entry pointing to 
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R212. Returning R21 as a result, the main algorithm will delete R212’s entry 
in R21 and call CONDENSETREE on this node. Considering the new 2=m , 
R21 is now facing an underflow. Therefore it will be added to the empty set 
Q  with its entry R12 in R2 being deleted. Calling CONDENSETREE again on 
R2 and given the fact that this node is facing an underflow itself now, R2 will 
be added to Q  as well and its entry R2 in the parental node deleted. The last 
call to CONDENSETREE will now find itself at the root level of the tree and 
according to the algorithm’s definition not apply any changes. Therefore the 
root node remains unchanged. 

Right now all entries in Q  will be re-inserted into the tree, starting with 
those entries that have been records in non-leaf nodes before their removal 
from the tree. These entries will all be inserted on a level such that there 
leafs will be on the general leaf-node level of the tree. In our case this applies 
to node R22 only. As all former records of non-leaf nodes haven been 
inserted, the algorithm now continues with former records of leaf nodes 
inserting them at the leaf-level. Therefore R211 will be inserted into node 
R22 and CONDENSETREE will finish. The following figures are to illustrate 
these operations. 

 

Figure 12: Saving nodes whose references have been removed from tree 
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Figure 13: Re-insertion of saved entries 

Eventually a last check turns out the root node to contain only a single 
entry which will now become the new root of the tree and we’ll see the new 
R-tree structure without the deleted entry R212 as shown below. 

 

Figure 14: Sample R-tree structure after deleting R212 

3.5 Node Splitting 

3.5.1 Exhaustive Approach 

Right now we have introduced two ways of manipulating an R-tree structure 
by inserting or deleting data. As we have seen, in either algorithm we have to 
deal with occurrences of underflow and overflow, i.e. that we may want or 
have to insert or delete data into or from a leaf that already contains the 
maximum or in the other case the minimum number of entries. The way how 
we deal with that matter is splitting up nodes into two and adjusting all 
preceding nodes in the tree that may also have to be split up as a result of 
this. As in the chapters before we just mentioned calls to SPLITNODE we are 
now going to have a closer look at the algorithms that perform the split. 

As Guttmann presents us with three different algorithms to implement the 
split node routine, we are first of all going to take a look at a quite exhaustive 
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and naïve yet simple approach to this problem. The basic and quite 
comprehensible idea behind this implementation is to simply try all possible 
split-ups and then simply select the best one. Now this brings up two 
questions, the first of which refers to what we mean by “the best one”. 

According to Guttmann a good split minimizes the total area of the MBRs 
generated by the split. This issue is to be illustrated by the follow figure. 

 

Figure 15: Different quality of node splitting 

Now the second question is about the efficiency of the above mentioned 
algorithm. It should be easy to understand that there are 12 −M  different 
possibilities to split up a node containing M  entries. Common sense tells us 
that this is not an option for an efficient implementation of an R-tree structure, 
which is why we are going to get to know two more advanced algorithms to 
deal with the splitting no R-tree nodes. 

3.5.2 Quadratic-Cost Algorithm 

This approach to the matter of node splitting will try to find a good split 
although there is no guarantee it will find the best split possible. Nevertheless 
this leads to a cost quadratic in M  as well as linear in the number of 
dimensions. 

The idea behind this implementation is to pick the two entries out of the 
M  entries in the original node together with the new entry that would 
consume the most space if put together in a node (subtracting their own 
area), that is that would waste the most space it they were part of the same 
node. One of these two entries is then put into the first node, whereas the 

Bad split Good split 
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other one is put into the second one. For all the remaining entries, the 
algorithm will step by step pick the one which creates the biggest difference 
in area when added to one of the new nodes and finally assigns it to the node 
which gains less in area by adding this entry. This is repeated till all of the 
remaining entries are assigned two one of the nodes and we finally get two 
new nodes containing all the entries of the original node plus the new entry 
that was to be inserted (assuming we were performing an insert operation). 
In case we were performing a delete operation things are but slightly 
different. 

Given this short and intuitive explanation we can now put it into a more 
formal and exact description of a quadratic-cost algorithm dividing 1+M  
index records into two groups, which would look like the following. 

Algorithm QUADRATICSPLIT 

(1) [Pick first entry for each group] Apply algorithm PICKSEEDS to choose 
two entries to be the first elements of the groups. Assign each to a 
group. 

(2) [Check if done] If all entries have been assigned, stop. If one group 
has so few entries that all the rest must be assigned to it in order for it 
to have the minimum number m , assign them and stop. 

(3) [Select entry to assign] Invoke algorithm PICKNEXT to choose the 
next entry to assign. Add it to the group whose covering rectangle will 
have to be enlarged least to accommodate it. Resolve ties by adding 
the entry to the group with smaller area, then to the one with fewer 
entries, then to either. Repeat from (2). 

 

As you can see, algorithm QUADRATICSPLIT makes use of two more 
algorithms, the first one of which is to select two entries to be the first ones of 
the new groups and looks as follows. 
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Algorithm PICKSEEDS 

(1) [Calculate inefficiency of grouping entries together] For each pair of 
entries 1E  and 2E , compose a rectangle J  including IE .1  and IE .2 . 
Calculate )].().([)( 21 IEareaIEareaJaread +−= . 

(2) [Chose the most wasteful pair] Choose the pair with the largest d . 

 

Last but not least the second algorithm is used to select one of the 
remaining entries for classification in a group. 

Algorithm PICKNEXT 

(1) [Determine cost of putting each entry in each group] Be 1G  and 2G  the 
two new groups to which the entries are to be assigned. For each 
entry E  not yet in a group, compose a rectangle J  including IG .1  and 

IE.  and calculate ).()(1 IEareaJaread −=  . Calculate 2d  similarly for 
the second group. 

(2) [Find entry with greatest preference for one group] Choose any entry 
with the maximum difference between 1d  and 2d . 

 

3.5.3 Linear-Cost Version 

To come to an end with this chapter we’ll at last have a short look on a linear-
cost algorithm which is basically the same as the above quadratic-cost 
version. The only differences can be found in modifications to PICKSEEDS 
and PICKNEXT. In fact PICKNEXT is changed to simply select any of the 
remaining entries. 

The modifications to PICKSEEDS which make the algorithm’s cost linear 
in M  as well as linear in the number of dimensions of the stored data are as 
shown below. 
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Algorithm PICKSEEDS 

(1) [Find extreme rectangles along all dimensions] Along each dimension, 
find the entry whose rectangle has the highest low side, and the one 
with lowest high side. Record the separation. 

(2) [Adjust for shape of the rectangle cluster] Normalize the separations 
by dividing by the width of the entire set along the corresponding 
dimension. 

(3) [Select the most extreme pair] Choose the pair with the greatest 
normalized separation along any dimension. 

 

3.6 Updates and Further Operations 
Besides the operations presented above, there are quite a few more that 
might be useful and are also well supported by R-tree structures. A very 
obvious one is updating the index when parts of the underlying data have 
changed. Basically this will result in deleting the index record of the affected 
data and re-inserting it after updating its MBR according to the changed data 
record. Thus the record will finally be in the right place in the index again. 

Furthermore modified search algorithms might be very handy. One may 
want to look for all data object completely containing the search object or vice 
versa all objects that are completely within the search area. Both of these 
operations can be easily implemented with slight modifications to the search 
algorithm presented above. Besides that one might also have use for a 
search of a specific know entry which we have already implemented as a part 
of the DELETE algorithm when calling FINDLEAF. 

As a last aspect to be mentioned one might think about several variants of 
range deletion which also shouldn’t be too hard to implement modifying the 
given DELETE algorithm and combining it with parts of the SEARCH 
algorithm. 

In the end one could say that on the matter of supported algorithms R-
trees are quite as well extensible and efficient for spatial data as B-trees in 
the subject of one-dimensional. 
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4 Performance Tests and Benchmarking 

As we have discussed a good set of algorithms useful when working on R-
trees we will now take a short look on some performance and memory 
benchmarks that were made by Guttmann to proof the practicality of his R-
tree structure and the algorithms on it. 

All of the performance tests have been done using a C-implementation of 
R-trees on a Vax 11/780 computer running Unix. Test data has been gained 
from the layout data of a RISC-II computer chip consisting of 1057 
rectangles. Trying not only to proof the practicality of the structure but also to 
choose suitable values for m  and M  as well as to evaluate different node-
splitting algorithms, Guttmann performed several tests with varying page 
sizes and accordingly changed M . The table below shows the page sizes 
used for benchmarking. 

Bytes per Page Max. Entries per Page ( M ) 

128 
256 
512 

1024 
2048 

6 
12 
25 
50 
102 

  
Figure 16: Different page size and according parameter M  

As discussing Guttmann’s testing methods in detail would lead way too far 
at this point we will have a look at a few diagrams resulting from these tests 
and point out only the most important aspects they show up. We’ll start by 
taking a look at insert and delete operations. The two figures below show the 
time needed to perform a certain insert and delete operation depending on 
the page size, using three different versions of the SPLITNODE algorithm. As 
expected linear implementation is the fastest. Nevertheless you will also 
notice that CPU cost for the linear algorithm is to a very small extent only 
depending on the page size and parameter m , strongly in contrast to the 
quadratic and exhaustive implementation when performing an insert 
operation. Concerning deletions you can see that they too a greatly 
influenced by the chosen m . 
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Figure 17: CPU cost of inserting records Figure 18: CPU cost of deleting records 

Let us now take a closer look at the effects of different node-splitting 
algorithms on search performance on an R-tree. As figures below point out, 
search performance remains almost constant no matter which node-splitting 
implementation has been used to fill the tree structure although exhaustive 
implementation must be granted a slight advantage. Further on you can see 
that search is quite insensitive to parameter m . 

Figure 19: Search performance – Pages 
touched 

Figure 20: Search performance – CPU 
cost 

As a next step, we are going to analyze space efficiency of an R-tree 
again compared by the split-node algorithm used and the page size but 
especially depending on the chosen node restrictions, which is parameter m . 
Given bellows diagrams one will find that exhaustive as well as quadratic-
cost implementations are especially sensitive to m  whereas the linear 
version is the only one that shows at least to some extent a certain 
constance. As one expects space usage is heavily improved by applying 
stricter node fill criteria. According to Guttmann this may reduce space usage 
by up to 50 per cent. 
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Figure 21: Space efficiency 

A second series of tests is now to give us an impression of how the 
performance of R-tree operations depends on the amount of data stored in 
the index. All benchmarks have been performed using a linear split-node 

implementation with 2=m  and quadratic-cost version with 
3
Mm = . Page size 

has been set to 1024 Byte for either implementation. The amount of data 
indexed has been varied starting at 1057 rectangles, increasing it to 2238 
and 3295 objects and finally performing on 4559 rectangles. 

Again we’ll at first take examine the performance of insert delete 
operations this time depending on the amount of data indexed in the tree. 
The diagram below states nearly constant costs for a quadratic algorithm 
except where the tree increases in height, as this leads to more levels on 
which a node split may occur. As the linear algorithm’s curve doesn’t show 
any jump at all we can assume that linear node splitting accounts for only a 
small part of the cost of insert operations. 

 

Figure 22: CPU cost of inserts and deletes vs. amount of data 
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Regarding delete operations we shall mention that no node splits occurred 
during the benchmark which is according to Guttmann due to relaxed node fill 
requirements and the relatively small number of data items. This is why 
jumps only appear where the height of the tree increases. In contrast the 
quadratic-cost version produced a varying number of splits and thus seems 
to be very rough. Basically you can interpret these results as that the cost of 
insert and delete operations is independent of the tree width whereas it is 
influenced by its height which grows slowly with the number of data items. 

Next two diagrams now show search performance on R-trees as a function 
of the amount of data being indexed. Basically those two figures show no 
more than the fact that search efficiency is nearly the same for either version 
of the SPLTNODE algorithm and that the index is quite effective in directing 
the search to small subtrees. Jumps in those figures can be explained by a 
decreasing significance of higher level nodes with increasing tree height. 

Figure 23: Search performance vs. 
amount of data – Pages touched 

Figure 24: Search performance vs. 
amount of data – CPU cost 

Last but not least we will again take a quick look at space efficiency of an 
R-tree. Therefore we’ll draw the space required fort he tree structure as a 
function of the amount of data indexed. This is exactly what is shown by the 
diagram below. As you can see the results are quite straight lines without 
jumps. The reason for this is the fact that most of the space in an R-tree is 
consumed by its leafs. For the linear benchmark the structure used up 40 
bytes per data item compared to 33 bytes with the quadratic-cost 
implementation. 20 bytes thereof were consumed by the index entry itself. 
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Figure 25: Space required for R-tree vs. amount of data 

As a conclusion one can say that R-trees show up really great 
performance as long as node parameters are in reasonable relation to the 
memory page size. In addition to that we have learned the linear 
SPLITNODE algorithm to be as effective as its quadratic-cost and exhaustive 
correspondents. 
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5 R-tree Modifications 

Although we have learned that R-trees are a very efficient and comfortable 
way to structure and work on spatial data there is no hint that they are the 
ultimate way to do so. Since its occurrence, Guttmann’s original concept has 
been reviewed and reconsidered by quite a few computer scientists over the 
years. Some of them have made only small modifications to the original R-
tree, whereas others have even tried to combine them with other data 
structures to gain a performance advantage. Before presenting you with a 
final conclusion on the topic of R-trees, at least a few of these modified R-
tree structures shall be mentioned. 

The first structure to be mentioned here is the so called packed R-tree. 
The basic idea behind this structure is to remove unused space from 
structure in order to reduce memory usage. 

R+-trees in stead are designed to reduce overlapping rectangles by 
dividing them into disjunctive MBR. As you might expect, this results in a 
more complex structure that becomes harder to maintain. Nevertheless this 
drastically increases the search performance on the tree. 

Structurally identical to the R-tree, R*-trees take their advantage out of 
modified insert and delete routines which take overlapping and circumference 
of MBRs into consideration. 

Another quite interesting concept can be found when looking at TV-trees. 
In contrast to R-trees, TV-tree structures abandon the concept of 
representing spatial data by its MBR and thus allow the use of more complex 
approximations for the objects to be indexed. 

X-trees again try to gain an advantage by avoiding overlapping of nodes 
that especially increases the greater the number of dimensions is. The basic 
concept how X-trees deal with this aspect is to dynamically increase the R-
tree node’s capacities. 

As a last modified R-tree structure QR-trees should be mentioned. 
Pursuing a hybrid concept, QR-trees are a combined structure trying to unite 
the advantages of quad trees with those of regular R-trees. As the discussion 
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of those would lead way too far, interested readers may like to refer to H. 
Samet’s comments on the design and analysis of spatial data structures [7]. 
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6 Conclusion 

As already mentioned in the introduction the importance of processing and 
storing spatial data has increased significantly over the last years. No matter 
if we talk about image processing, computer aided design or cartography. 
What they all have in common is the fact that they are usually dealing with 
vast amounts of data which are simply hard and inefficient to be handled by 
common index structures. Therefore most current databases that are to store 
multi-dimensional data rely on spatial structures such as R-trees and there 
modifications. These structures are an advanced, very well-developed and 
efficient way to deal with spatial data and in contrast to most other multi-
dimensional indexes allow the processing not only of point data but also areal 
objects. 

Therefore one could say that when it comes to the processing and 
indexing of spatial objects the R-tree is what B-trees are in the field of one-
dimensional data indexes. 
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7 Glossary 

 CP, child-pointer 
Reference stored in a node, pointing to another node on a lower level of 
the index structure. 

 MBR, minimum bounding rectangle 
The smallest n-dimensional rectangle that can be laid around an n-
dimensional object so that it completely covers the object along each 
dimension. 

 Overflow 
The insertion of data into a node exceeds the maximum number of entries 
for nodes of the given R-tree. 

 TID, tuple-identifier 
Reference stored in leaf nodes pointing to tuples of objects in the 
database. 

 Underflow 
The deletion of data from a node under-runs the minimum number of 
entries for nodes of the given R-tree. 
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