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" A
Introduction, Motivation

m I[mportance of effectively storing and
iIndexing spatial data (CAD, VR, Image
Processing, Cartography, ...)

m One-dimensional indexes not suitable

m Strong limitations with most spatial
structures (e.g. point data only, not
dynamic, performance with paged
memory, ...)
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Introduction, Motivation

> Antonin Guttman, 1984

“A Dynamic Index Structure For Spatial
Searching”

Based on B-trees
> Region-trees (R-trees)
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R-tree Index Structure

Data objects are re-
presented by their MBRs

I
|

_______
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R-tree Index Structure

Formal Description
m Structure consisting of (regular) nodes containing

tupl
upies (I N CP)
m At the lowest level: leaf-nodes with tuples
(1., TID)

m MBR (minimum bounding rectangle)
In :(IO’ Il """ In)




R-tree Index Structure

Important Parameters
m Maximum number of elements per node

M

m Minimum number of elements per node

M
m<—
2

m Height of an R-tree
I_Iogm N—‘_l
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R-tree Index Structure

Important Restrictions
m All leaf-nodes are on the same level
m Root has at least two children (unless it is a leaf)
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" A
Algorithms on R-trees: Search

m Similar to B-tree search

m Quite easy & straight forward
(Traverse the whole tree starting at the root node)

m No guarantee on good worst-case performance!

(Possible overlapping of rectangles of entries
within a single node!)
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Algorithms on R-trees: Search

Short Description:

m For all entries in a non-leaf node:
Check If overlapping
- If yes: check node pointed to by this entry

m If node is a leaf-node:
Check all entries if overlapping the search object
- If yes: entry is a qualifying record!




Algorithms on R-trees: Search
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" A
Algorithms on R-trees: Insert

m  Again: Similar to corresponding B-tree operation

m Basically consist of 3 parts:

CHOOSELEAF
(Find place to insert new object)

INSERT
(Insert the new object)

ADJUSTTREE
(Adjusting preceding nodes)
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Algorithms on R-trees: Insert

Short Description:

m CHOOSELEAF:
Start with root > Run through all nodes:
Find the one which would have to be least
enlarged to include given object!

m INSERT:
Check If room for another entry

—>Insert new entry directly OR after calling
SPLITNODE (in case of no room)
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Algorithms on R-trees: Insert

Short Description:
m CHOOSELEAF(...)
m INSERT (...)

m ADJUSTTREE:
Ascend from node with new entry:
Adjust all MBRs!
In case of node spilit:
Add new entry to parent node
(If no room in parent node, invoke SPLITNODE again)
Propagate upwards till root is reached!




Algorithms on R-trees: Insert

Find node to insert the
new object into:

R1 R2
R12 R13

Leaf is full! Overflow!
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Algorithms on R-trees: Insert
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orithms on R-trees: Insert
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Algorithms on R-trees: Delete

m NOT similar to B-tree DELETE
(Treatment of underflows)
m DB-tree:
Merge under-full node with “neighbor”
m R-tree:
Delete under-full node and re-insert
m \Why?
Re-use of INSERT routine
Incrementally refines spatial structure
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Algorithms on R-trees: Delete

“Very” Short Description

m FINDLEAF:
_ocate the leaf that contains object to be deleted

m DELETE:
Delete entry from node

m CONDENSETREE:
Delete and re-insert node if under-full (and in the
following all resulting under-full nodes)




Algorithms on R-trees: Delete
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Algorithms on R-trees: Splitting

m  Splitting of nodes necessary after underflow or
overflow (as a result of a delete or insert
operation)

m Ultimate goal: Minimize the resulting node’s
MBRs

m  Secondary aim: Do it fast! ;-)

m 3 Implementations by Guttmann:
Exhaustive, Quadratic-cost, Linear-cost
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Algorithms on R-trees: Splitting

m  Minimal resulting MBRSs:

————————————————————————————————————————

————————————————————————————————

_______________________________

____________________________________________

Bad split Good split

m Exhaustive Approach:
Simply try all possible split-ups!
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Algorithms on R-trees: Splitting

m  Quadratic-cost Algorithm:
Pick the 2 out of M entries that would consume the most
space if put together.
- Put one in each group
For all remaining entries: Pick the one that would make
the biggest difference in area when put to one of the two
groups
- Add it to the one with the least difference
Finished when all entries are put in either group!

s Quadratic in M, linear in the number of dimensions
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Algorithms on R-trees: Splitting

m Linear-cost Implementation:

Basically the same as quadratic-cost algorithm
Differences:

First pair is picked by finding the two rectangles

with the greatest normalized separation in any
dimension.

Remaining pairs are selected randomly.

m Linear in M as well as in the number of
dimensions
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" S
Algorithms on R-trees: Other Ops

m  Modified search algorithm
m Key search / search for specific entries

m  Range deletion

m R-trees are quite as well extensible and efficient
as B-trees for the matter of algorithms
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" A
Performance of R-trees

Why do Benchmarking?

m Proof practicality of the structure

m Find suitable values for m and M

m Test various node-splitting algorithms

Testing environment:

m  C-implementation running under UNIX

m Layout of a RISC-II chip with 1057 rectangles
m Different page sizes (128 — 2048 bytes)

m Various values for M (6 — 102)




Performance of R-trees

200 Ema/

100 /

E = Exhaustive algorthnj
Q = Quadratic algonthm
L = Linear algorithm

Em=M/2

5 —
128 258

_Qm:E

Q m=M/2

Lm=2
Lm=M/2

=g 1622 2048

Bytes per page

E = Exhaustive nlgonthn'

E m=M /g Q = Quadratic algorithm
L = Linear algonthm

7 Lm=M/2

1 Qm=M/2

128 256

512

1024
Byles per page

2048

Linear INSERT fastest

Linear INSERT quite
Insensitive to M and m

Quadratic INSERT
depends on M as well
as m

DELETE extremely
sensitive to m




Performance of R-trees
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Performance of R-trees
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" A
R-tree Modifications

Why?
m Improve performance
m  Optimize space usage

Different forms of R-trees:

m R*-trees: Reduce overlapping MBRs - Increase
search performance

m R*-trees: Take overlapping and circumference in
to consideration when performing INSERT or
DELETE
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R-tree Modifications

m TV-trees: Allow more complex objects than
MBRSs

m X-trees: Avoid / reduce overlapping by
dynamically adjusting node capacities

m  QR-trees: Hybrid concept, combining R-trees
with quad trees
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" A
Conclusions

Reasons for R-trees:

m |Importance of being able to store and effectively
search spatial data

m EXxisting structures with many limitations

Basic ldea:

m  Structure similar to B-tree

m  Represent objects by their MBR
m  Allow overlapping




" A
Conclusions

Algorithms:
m  Search and insert similar to B-tree operations

m Delete performing re-insert instead of merge for under-full nodes
(incrementally refines spatial structure)

m  Node splitting: Benchmarks show that linear version performs quite
as well as quadratic-cost implementation

Modifications:

m  Structure is easy to adapt for special applications and their needs

m  Performance advantages are usually paid for with price of a
structure that gets harder to maintain

R-trees are the spatial correspondent of B-trees!
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