
Algorithms and Data Structures
for Database Systems

Jürgen Treml
2005-06-08

Overview

1. Introduction, Motivation
2. R-tree Index Structure – Overview
3. Algorithms on R-trees

Searching
Insert / Delete
Node Splitting
Updates & other Operations

4. Performance, Benchmarks
5. R-tree Modifications
6. Conclusion

Overview – Where are we?

1. Introduction, Motivation
2. R-tree Index Structure – Overview
3. Algorithms on R-trees

Searching
Insert / Delete
Node Splitting
Updates & other Operations

4. Performance, Benchmarks
5. R-tree Modifications
6. Conclusion

Introduction, Motivation

Importance of effectively storing and
indexing spatial data (CAD, VR, Image
Processing, Cartography, …)
One-dimensional indexes not suitable
Strong limitations with most spatial
structures (e.g. point data only, not
dynamic, performance with paged
memory, …)

Introduction, Motivation

Antonin Guttman, 1984
“A Dynamic Index Structure For Spatial
Searching”
Based on B-trees

Region-trees (R-trees)

Overview – Where are we?

1. Introduction, Motivation
2. R-tree Index Structure – Overview
3. Algorithms on R-trees

Searching
Insert / Delete
Node Splitting
Updates & other Operations

4. Performance, Benchmarks
5. R-tree Modifications
6. Conclusion

R-tree Index Structure
Data objects are re-

presented by their MBRs

R-tree Index Structure

Formal Description
Structure consisting of (regular) nodes containing
tuples),(CPI n

At the lowest level: leaf-nodes with tuples
),(TIDIn

MBR (minimum bounding rectangle)
),...,,(10 nn IIII =

R-tree Index Structure

Important Parameters
Maximum number of elements per node

M
Minimum number of elements per node

2
Mm ≤

Height of an R-tree
⎡ ⎤ 1log −Nm

R-tree Index Structure

Important Restrictions
All leaf-nodes are on the same level
Root has at least two children (unless it is a leaf)

Overview – Where are we?

1. Introduction, Motivation
2. R-tree Index Structure – Overview
3. Algorithms on R-trees

Searching
Insert / Delete
Node Splitting
Updates & other Operations

4. Performance, Benchmarks
5. R-tree Modifications
6. Conclusion

Algorithms on R-trees: Search

Similar to B-tree search
Quite easy & straight forward
(Traverse the whole tree starting at the root node)

No guarantee on good worst-case performance!
(Possible overlapping of rectangles of entries
within a single node!)

Algorithms on R-trees: Search

Short Description:
For all entries in a non-leaf node:
Check if overlapping

If yes: check node pointed to by this entry
If node is a leaf-node:
Check all entries if overlapping the search object

If yes: entry is a qualifying record!

Algorithms on R-trees: Search

R111 R112 R113 R131 R132 R133 R221 R222 R223

R12R11 R13 R22R21

R121 R122 R211 R212

R1 R2

R1

R2

R11

R12

R13

R22

R21

R111

R112

R113

R121

R122

R131

R133

R132

R221

R222
R223

R211

R212

Overview – Where are we?

1. Introduction, Motivation
2. R-tree Index Structure – Overview
3. Algorithms on R-trees

Searching
Insert / Delete
Node Splitting
Updates & other Operations

4. Performance, Benchmarks
5. R-tree Modifications
6. Conclusion

Algorithms on R-trees: Insert

Again: Similar to corresponding B-tree operation
Basically consist of 3 parts:

1. CHOOSELEAF
(Find place to insert new object)

2. INSERT
(Insert the new object)

3. ADJUSTTREE
(Adjusting preceding nodes)

Algorithms on R-trees: Insert

Short Description:
CHOOSELEAF:
Start with root Run through all nodes:
Find the one which would have to be least
enlarged to include given object!
INSERT:
Check if room for another entry

Insert new entry directly OR after calling
SPLITNODE (in case of no room)

Algorithms on R-trees: Insert

Short Description:
CHOOSELEAF (…)
INSERT (…)
ADJUSTTREE:
Ascend from node with new entry:
Adjust all MBRs!
In case of node split:
Add new entry to parent node
(If no room in parent node, invoke SPLITNODE again)
Propagate upwards till root is reached!

Algorithms on R-trees: Insert

R1

R2

R11

R12

R13

R22

R21

R111

R112

R113

R121

R122

R131

R133

R132

R221

R222
R223

R211

R212

Find node to insert the
new object into:

R111 R112 R113 R131 R132 R133 R221 R222 R223

R22R21

R121 R122 R211 R212

R12 R13R11

R2R1

Leaf is full! Overflow!

R11

R111

R112

R113

R1

R2

R12

R13

R22

R21

R121

R122

R131

R133

R132

R221

R222

R223

R211

R212

Algorithms on R-trees: Insert
R11

R111

R112

R113

R11

R111

R112

R113

R11’

R111 R112 R113R111 R112 R113

R11

R111

R112

R113

R11’

Algorithms on R-trees: Insert

R111 R112 R113 R131 R132 R133 R221 R222 R223

R22R21

R121 R122 R211 R212

R12 R13R11

R2R1

R221 R222 R223R211 R212R111 R112 R131 R132 R133

R22R21

R121 R122

R1 R2R1’

R12 R13R11’

R113

R11

R131 R132 R133 R221 R222 R223

R22R21

R121 R122 R211 R212

R12 R13R11

R2R1

R111 R112 R113 R131 R132 R133 R221 R222 R223

R22R21

R121 R122 R211 R212

R12 R13R11

R2R1

R111 R112 R113 R131 R132 R133 R221 R222 R223

R22R21

R121 R122 R211 R212

R12 R13R11

R2R1

R111 R112 R113

Algorithms on R-trees: Delete

NOT similar to B-tree DELETE
(Treatment of underflows)
B-tree:
Merge under-full node with “neighbor”
R-tree:
Delete under-full node and re-insert
Why?
Re-use of INSERT routine
Incrementally refines spatial structure

Algorithms on R-trees: Delete

“Very” Short Description
FINDLEAF:
Locate the leaf that contains object to be deleted
DELETE:
Delete entry from node
CONDENSETREE:
Delete and re-insert node if under-full (and in the
following all resulting under-full nodes)

Algorithms on R-trees: Delete
R1 R2

R12R11 R13

R111 R112 R113

R221 R222 R223

R121 R122 R131 R132 R133

R211 R212

R22R21

R22

R211 R221 R222 R223

R22

R211 R221 R222 R223

R1

R111 R112 R113 R121 R122 R131 R132 R133

R12R11 R13 R22

R222 R223 R211R221

R1 R2

R12R11 R13

R22R21

R111 R112 R113

R221 R222 R223

R121 R122 R131 R132 R133

R211 R212

R111 R112 R113 R121 R122 R131 R132 R133

R12R11 R13 R22

R222 R223 R211R221

R1 R2

R12R11 R13

R22R21

R111 R112 R113

R221 R222 R223

R121 R122 R131 R132 R133

R211 R212

Overview – Where are we?

1. Introduction, Motivation
2. R-tree Index Structure – Overview
3. Algorithms on R-trees

Searching
Insert / Delete
Node Splitting
Updates & other Operations

4. Performance, Benchmarks
5. R-tree Modifications
6. Conclusion

Algorithms on R-trees: Splitting

Splitting of nodes necessary after underflow or
overflow (as a result of a delete or insert
operation)
Ultimate goal: Minimize the resulting node’s
MBRs
Secondary aim: Do it fast! ;-)
3 Implementations by Guttmann:
Exhaustive, Quadratic-cost, Linear-cost

Algorithms on R-trees: Splitting

Minimal resulting MBRs:

Bad split Good split

Exhaustive Approach:
Simply try all possible split-ups!

Algorithms on R-trees: Splitting

Quadratic-cost Algorithm:
Pick the 2 out of M entries that would consume the most
space if put together.

Put one in each group
For all remaining entries: Pick the one that would make
the biggest difference in area when put to one of the two
groups

Add it to the one with the least difference
Finished when all entries are put in either group!
Quadratic in M, linear in the number of dimensions

Algorithms on R-trees: Splitting

Linear-cost Implementation:
Basically the same as quadratic-cost algorithm
Differences:
First pair is picked by finding the two rectangles
with the greatest normalized separation in any
dimension.
Remaining pairs are selected randomly.
Linear in M as well as in the number of
dimensions

Overview – Where are we?

1. Introduction, Motivation
2. R-tree Index Structure – Overview
3. Algorithms on R-trees

Searching
Insert / Delete
Node Splitting
Updates & other Operations

4. Performance, Benchmarks
5. R-tree Modifications
6. Conclusion

Algorithms on R-trees: Other Ops

Modified search algorithm
Key search / search for specific entries

Range deletion

R-trees are quite as well extensible and efficient
as B-trees for the matter of algorithms

Overview – Where are we?

1. Introduction, Motivation
2. R-tree Index Structure – Overview
3. Algorithms on R-trees

Searching
Insert / Delete
Node Splitting
Updates & other Operations

4. Performance, Benchmarks
5. R-tree Modifications
6. Conclusion

Performance of R-trees

Why do Benchmarking?
Proof practicality of the structure
Find suitable values for m and M
Test various node-splitting algorithms

Testing environment:
C-implementation running under UNIX
Layout of a RISC-II chip with 1057 rectangles
Different page sizes (128 – 2048 bytes)
Various values for M (6 – 102)

Performance of R-trees
Linear INSERT fastest
Linear INSERT quite
insensitive to M and m
Quadratic INSERT
depends on M as well
as m
DELETE extremely
sensitive to m

Performance of R-trees
Same page hit / miss
performance for linear
and quadratic split
Slight advantage for
exhaustive version ;-)
Space usage strongly
depending on m

Performance of R-trees
Quadratic-cost splitting
with jumps at INSERT
operations for
increasing amount of
data
Linear INSERT
extremely constant
R-tree structure very
effective in directing
search to small subtrees

Overview – Where are we?

1. Introduction, Motivation
2. R-tree Index Structure – Overview
3. Algorithms on R-trees

Searching
Insert / Delete
Node Splitting
Updates & other Operations

4. Performance, Benchmarks
5. R-tree Modifications
6. Conclusion

R-tree Modifications

Why?
Improve performance
Optimize space usage

Different forms of R-trees:
R+-trees: Reduce overlapping MBRs Increase
search performance
R*-trees: Take overlapping and circumference in
to consideration when performing INSERT or
DELETE

R-tree Modifications

TV-trees: Allow more complex objects than
MBRs
X-trees: Avoid / reduce overlapping by
dynamically adjusting node capacities
QR-trees: Hybrid concept, combining R-trees
with quad trees

Overview – Where are we?

1. Introduction, Motivation
2. R-tree Index Structure – Overview
3. Algorithms on R-trees

Searching
Insert / Delete
Node Splitting
Updates & other Operations

4. Performance, Benchmarks
5. R-tree Modifications
6. Conclusion

Conclusions

Reasons for R-trees:
Importance of being able to store and effectively
search spatial data
Existing structures with many limitations

Basic Idea:
Structure similar to B-tree
Represent objects by their MBR
Allow overlapping

Conclusions
Algorithms:

Search and insert similar to B-tree operations
Delete performing re-insert instead of merge for under-full nodes
(incrementally refines spatial structure)
Node splitting: Benchmarks show that linear version performs quite
as well as quadratic-cost implementation

Modifications:
Structure is easy to adapt for special applications and their needs
Performance advantages are usually paid for with price of a
structure that gets harder to maintain

R-trees are the spatial correspondent of B-trees!

Overview – Where are we?

1. Introduction, Motivation
2. R-tree Index Structure – Overview
3. Algorithms on R-trees

Searching
Insert / Delete
Node Splitting
Updates & other Operations

4. Performance, Benchmarks
5. R-tree Modifications
6. Conclusion

