R-trees

Algorithms and Data Structures
for Database Systems

Jurgen Treml
2005-06-08

Overview
1. Introduction, Motivation
2. R-tree Index Structure — Overview
3. Algorithms on R-trees

m Searching

m [nsert/ Delete

m Node Splitting

m Updates & other Operations
4. Performance, Benchmarks
5. R-tree Modifications
6. Conclusion

COOO00000000

» I
Overview — Where are we?

1. Introduction, Motivation
R-tree Index Structure — Overview

Algorithms on R-trees

m Searching

m Insert/ Delete

m Node Splitting

m Updates & other Operations

Performance, Benchmarks
R-tree Modifications
Conclusion

w N

R

COOO00000000

" A
Introduction, Motivation

m I[mportance of effectively storing and
iIndexing spatial data (CAD, VR, Image
Processing, Cartography, ...)

m One-dimensional indexes not suitable

m Strong limitations with most spatial
structures (e.g. point data only, not
dynamic, performance with paged
memory, ...)

" A
Introduction, Motivation

> Antonin Guttman, 1984

“A Dynamic Index Structure For Spatial
Searching”

Based on B-trees
> Region-trees (R-trees)

» I
Overview — Where are we?

1. Introduction, Motivation
R-tree Index Structure — Overview

Algorithms on R-trees

m Searching

m Insert/ Delete

m Node Splitting

m Updates & other Operations

Performance, Benchmarks
R-tree Modifications
Conclusion

w N

R

COOO000000C7E

R-tree Index Structure

Data objects are re-
presented by their MBRs

I
|

" A
R-tree Index Structure

Formal Description
m Structure consisting of (regular) nodes containing

tupl
upies (I N CP)
m At the lowest level: leaf-nodes with tuples
(1., TID)

m MBR (minimum bounding rectangle)
In :(IO’ Il """ In)

R-tree Index Structure

Important Parameters
m Maximum number of elements per node

M

m Minimum number of elements per node

M
m<—
2

m Height of an R-tree
I_Iogm N—‘_l

" A
R-tree Index Structure

Important Restrictions
m All leaf-nodes are on the same level
m Root has at least two children (unless it is a leaf)

» I
Overview — Where are we?

1. Introduction, Motivation
R-tree Index Structure — Overview

Algorithms on R-trees

m Searching

m Insert/ Delete

m Node Splitting

m Updates & other Operations

Performance, Benchmarks
R-tree Modifications
Conclusion

w N

R

COOO00000C] = =

" A
Algorithms on R-trees: Search

m Similar to B-tree search

m Quite easy & straight forward
(Traverse the whole tree starting at the root node)

m No guarantee on good worst-case performance!

(Possible overlapping of rectangles of entries
within a single node!)

" A
Algorithms on R-trees: Search

Short Description:

m For all entries in a non-leaf node:
Check If overlapping
- If yes: check node pointed to by this entry

m If node is a leaf-node:
Check all entries if overlapping the search object
- If yes: entry is a qualifying record!

Algorithms on R-trees: Search

R111

R112

R113

R121

R122

‘lliilllliill

|iiii||iiiilliiiil

R21

Ba2

R211

R212

R221

R222

R223

» I
Overview — Where are we?

1. Introduction, Motivation
R-tree Index Structure — Overview

Algorithms on R-trees

m Searching

m Insert/ Delete

m Node Splitting

m Updates & other Operations

Performance, Benchmarks
R-tree Modifications
Conclusion

w N

R

COOO0008 0= E

" A
Algorithms on R-trees: Insert

m Again: Similar to corresponding B-tree operation

m Basically consist of 3 parts:

CHOOSELEAF
(Find place to insert new object)

INSERT
(Insert the new object)

ADJUSTTREE
(Adjusting preceding nodes)

" A
Algorithms on R-trees: Insert

Short Description:

m CHOOSELEAF:
Start with root > Run through all nodes:
Find the one which would have to be least
enlarged to include given object!

m INSERT:
Check If room for another entry

—>Insert new entry directly OR after calling
SPLITNODE (in case of no room)

" A
Algorithms on R-trees: Insert

Short Description:
m CHOOSELEAF(...)
m INSERT (...)

m ADJUSTTREE:
Ascend from node with new entry:
Adjust all MBRs!
In case of node spilit:
Add new entry to parent node
(If no room in parent node, invoke SPLITNODE again)
Propagate upwards till root is reached!

Algorithms on R-trees: Insert

Find node to insert the
new object into:

R1 R2
R12 R13

Leaf is full! Overflow!

"
Algorithms on R-trees: Insert

R11

R112

R111

R1

R11 R13
R11Z
R2
R132
D R111

R133

R1]

R112

R113

R12

R122

R221

{:: R111

R112 | |

R113

R223

~z23

R22

orithms on R-trees: Insert

R1 | R2
R11 :12 R13 R21 | R22
R121 | R122 R131 | R132 | R133 | | R211 | R212 R221 | R222 | R223
Rt | R2
ﬁ
R11 R11 | ri] R11 | R12 | R13 R21 | R24 R21 | R22
| |
il rip bkl ria k] rizt | r12| R121 | R122 3] R131 | R132 | R133 p1f R211 | Ro12 bo] R221 | R222 | R223

" J
Algorithms on R-trees: Delete

m NOT similar to B-tree DELETE
(Treatment of underflows)
m DB-tree:
Merge under-full node with “neighbor”
m R-tree:
Delete under-full node and re-insert
m \Why?
Re-use of INSERT routine
Incrementally refines spatial structure

" J
Algorithms on R-trees: Delete

“Very” Short Description

m FINDLEAF:
_ocate the leaf that contains object to be deleted

m DELETE:
Delete entry from node

m CONDENSETREE:
Delete and re-insert node if under-full (and in the
following all resulting under-full nodes)

Algorithms on R-trees: Delete

R11 | R12 | R13 | R22

4 R11 | R12 | R13 :
R111|R112|R113 R221|R222|R223

I —— I — — I — —
LRlll R112|R113 R121|R122 R131|R132[R133
r---"=--"=~-"~"~T~ "~~~ TTTTTTTTTTTTTTTTTTTTTTSTSSTeTT T _______"'
']
| R22 |
! :
']
' |
']
1
! R211 R221 | R222 | R223 '
! :
L e TTT====—====—=———=————H - ————————————- 1
R1
Rl | R2
R11l | R12 | R13 | R22 |4
R21 | R22
I
R111 | R112 | R113 | [Ri21 iRz | R131 | R132 | R133 R221 | R222 | R223 R211J
|
R11 | R12 | R13 —

R211 R221|R222|R223

R111|R112|R113 R121|R122 R131|R132|R133

» I
Overview — Where are we?

1. Introduction, Motivation
R-tree Index Structure — Overview

Algorithms on R-trees

m Searching

m Insert/ Delete

m Node Splitting

m Updates & other Operations

Performance, Benchmarks
R-tree Modifications
Conclusion

w N

R

COOO000E 0] EE

" J
Algorithms on R-trees: Splitting

m Splitting of nodes necessary after underflow or
overflow (as a result of a delete or insert
operation)

m Ultimate goal: Minimize the resulting node’s
MBRs

m Secondary aim: Do it fast! ;-)

m 3 Implementations by Guttmann:
Exhaustive, Quadratic-cost, Linear-cost

" JJ
Algorithms on R-trees: Splitting

m Minimal resulting MBRSs:

——

————————————————————————————————

__

Bad split Good split

m Exhaustive Approach:
Simply try all possible split-ups!

" J
Algorithms on R-trees: Splitting

m Quadratic-cost Algorithm:
Pick the 2 out of M entries that would consume the most
space if put together.
- Put one in each group
For all remaining entries: Pick the one that would make
the biggest difference in area when put to one of the two
groups
- Add it to the one with the least difference
Finished when all entries are put in either group!

s Quadratic in M, linear in the number of dimensions

" J
Algorithms on R-trees: Splitting

m Linear-cost Implementation:

Basically the same as quadratic-cost algorithm
Differences:

First pair is picked by finding the two rectangles

with the greatest normalized separation in any
dimension.

Remaining pairs are selected randomly.

m Linear in M as well as in the number of
dimensions

» I
Overview — Where are we?

1. Introduction, Motivation
R-tree Index Structure — Overview

Algorithms on R-trees

m Searching

m Insert/ Delete

m Node Splitting

m Updates & other Operations

Performance, Benchmarks
R-tree Modifications
Conclusion

w N

R

OO0 EEC]EE

" S
Algorithms on R-trees: Other Ops

m Modified search algorithm
m Key search / search for specific entries

m Range deletion

m R-trees are quite as well extensible and efficient
as B-trees for the matter of algorithms

I
Overview — Where are we?

1. Introduction, Motivation
R-tree Index Structure — Overview

Algorithms on R-trees

m Searching

m Insert/ Delete

m Node Splitting

m Updates & other Operations

Performance, Benchmarks
R-tree Modifications
Conclusion

w N

R

COCOB0EEEE

" A
Performance of R-trees

Why do Benchmarking?

m Proof practicality of the structure

m Find suitable values for m and M

m Test various node-splitting algorithms

Testing environment:

m C-implementation running under UNIX

m Layout of a RISC-II chip with 1057 rectangles
m Different page sizes (128 — 2048 bytes)

m Various values for M (6 — 102)

Performance of R-trees

200 Ema/

100 /

E = Exhaustive algorthnj
Q = Quadratic algonthm
L = Linear algorithm

Em=M/2

5 —
128 258

_Qm:E

Q m=M/2

Lm=2
Lm=M/2

=g 1622 2048

Bytes per page

E = Exhaustive nlgonthn'

E m=M /g Q = Quadratic algorithm
L = Linear algonthm

7 Lm=M/2

1 Qm=M/2

128 256

512

1024
Byles per page

2048

Linear INSERT fastest

Linear INSERT quite
Insensitive to M and m

Quadratic INSERT
depends on M as well
as m

DELETE extremely
sensitive to m

Performance of R-trees

E = Exhaustive algorithm -

8}
@ = Quadratic algonthm
Pages 5 L = Linear algorithm
touched N, Em=2
per 4 NS
qualifying ~
l.'d | hY g \\ N
record 9 Em=M/2 "\
2t
L m=M/2
1t m=2
L m=2
T L
128 258 512 1024 2048
Bytes per page
" E = Exhaustive algorithm
50kl Q = Quadratic algorithm |

45kp—

Bytes 40k

required

35k}

30k}

Em=2 | = Linear algorithm

-

128

256 512
Bytes per page

1024 2048

Q m=2

'h.“‘ “
~~ | Lm=2

Lm=M/2

Qm=M/2

Same page hit / miss
performance for linear
and quadratic split

Slight advantage for
exhaustive version ;-)

Space usage strongly
depending on m

Performance of R-trees

40

Q= Qum':lrauc algo;nthm. m=il/3
L = Linear algorithm, m=2

CPU msec Q mnsert
per 30p '
insert
de 20 d
delete - L delete Q delete-
/___———-—-"'"
10 _/ L msert
100D 2000 3000 4000 5000
Number of records
300
250 -
CPU usec
per 200}
quahfying
record 150} Q

100}

S0

+ Q = Quadratic algorithm, m=M/3
L = Linear algorithm, m=2

L

1000

2000 3000 4000 5000
Number of records

Quadratic-cost splitting
with jumps at INSERT
operations for
Increasing amount of
data

Linear INSERT
extremely constant

R-tree structure very
effective in directing
search to small subtrees

» I
Overview — Where are we?

1. Introduction, Motivation
R-tree Index Structure — Overview

Algorithms on R-trees

m Searching

m Insert/ Delete

m Node Splitting

m Updates & other Operations

Performance, Benchmarks
R-tree Modifications
Conclusion

w N

R

CCOEOD0EEEE

" A
R-tree Modifications

Why?
m Improve performance
m Optimize space usage

Different forms of R-trees:

m R*-trees: Reduce overlapping MBRs - Increase
search performance

m R*-trees: Take overlapping and circumference in
to consideration when performing INSERT or
DELETE

" A
R-tree Modifications

m TV-trees: Allow more complex objects than
MBRSs

m X-trees: Avoid / reduce overlapping by
dynamically adjusting node capacities

m QR-trees: Hybrid concept, combining R-trees
with quad trees

» I
Overview — Where are we?

1. Introduction, Motivation
R-tree Index Structure — Overview

Algorithms on R-trees

m Searching

m Insert/ Delete

m Node Splitting

m Updates & other Operations

Performance, Benchmarks
R-tree Modifications
Conclusion

w N

R

[IEEO000EEE

" A
Conclusions

Reasons for R-trees:

m |Importance of being able to store and effectively
search spatial data

m EXxisting structures with many limitations

Basic ldea:

m Structure similar to B-tree

m Represent objects by their MBR
m Allow overlapping

" A
Conclusions

Algorithms:
m Search and insert similar to B-tree operations

m Delete performing re-insert instead of merge for under-full nodes
(incrementally refines spatial structure)

m Node splitting: Benchmarks show that linear version performs quite
as well as quadratic-cost implementation

Modifications:

m Structure is easy to adapt for special applications and their needs

m Performance advantages are usually paid for with price of a
structure that gets harder to maintain

R-trees are the spatial correspondent of B-trees!

» I
Overview — Where are we?

1. Introduction, Motivation
R-tree Index Structure — Overview

Algorithms on R-trees

m Searching

m Insert/ Delete

m Node Splitting

m Updates & other Operations

Performance, Benchmarks
R-tree Modifications
Conclusion

w N

R

