
- 1 -

Rendering Smoke & Clouds

Jürgen Treml

juergen.treml@gmail.com

www.juergentreml.de

Abstract

This paper is to give a short summary on the topics covered by a talk given during the course ‘Game Design’ at

the Technical University of Munich. Among the topics is an overview about clouds in the real world, what they

are and why we can see them as well as two different approaches on rendering and displaying clouds on a

computer. The first one of these approaches is based on physical modeling and an automated, noise-based

generation of clouds whereas the second one is a more artistic approach on creating and displaying clouds. Last

but not least I will discuss, very shortly, a few ways how to animate clouds. Much unlike the title suggests, the

topic of smoke is somewhat put aside, as rendering it is quite similar to rendering clouds whereas animation,

where smoke differs from clouds, has not been part of the talk.

Keywords: Cloud Rendering, Volume Rendering, Splatting, Scattering, Random Noise, Perlin Noise

1. Introduction

In the real world, we’re that much accustomed to

seeing clouds, that quite often we don’t even take

much notice of them. When it comes to certain

computers games, especially flight simulators and

games which heavily rely on outdoor scenes, it’s

just the opposite. We tend to pay quite some

attention to the clouds in the sky, unfortunately not

for their beautifulness but for their absence or, if

present, usually poor quality. Today’s games are

doing just fine as long as you’re busy enough

keeping your aircraft under control and don’t find

the time to enjoy the environment you see outside

the aircraft’s windows, though one must not forget

that things have improved a lot over the last years

with the potential of GPUs steadily increasing. Still,

so far, there seems to be no perfect or at least

optically totally convincing way to render clouds

but there are different and promising approaches

that do achieve good quality.

Basically there are two different sides where these

approaches come from. One is to try to

approximate, as good as possible (or necessary), the

physical principles and mathematical equations

behind clouds. Doing so seems quite straight

forward and by definition, if approximated just well

enough, should be the most precise and convincing

way to simulate and display clouds, just right for,

e.g. meteorological simulations and scientific

studies. Nevertheless, for a game this doesn’t have

to be the preferred way to achieve clouds. For a

game, usually you need optically convincing

clouds, or in other words, clouds that just look

good. They don’t necessarily have to be physically

correct, and in fact quite often they’re not. Instead

you’re worried about your framerate, i.e. how fast

your clouds can be rendered and the game designer

at the desk next to you expects you to give him as

much freedom as possible in influencing the

appearance of the clouds to be seen in the game. A

physically exact simulation might not be the best

way to achieve those two goals.

For this, in the following, after a short paragraph

about clouds in the ‘real’ world, I’m going to

present some of the basics and a few examples

behind each of the two approaches. I’m going to get

into cloud generation as well as cloud rendering

and, in short, also into the animation of clouds. But

first of all, we should get an idea of what exactly

clouds are.

2. Clouds in the ‘real’ World

What exactly are clouds? Obviously they’re usually

more or less white spots in the sky. But that leaves

two questions open: Where do they come from and

why do we perceive them as ‘more or less white’,

or in general, colored spots? Both of these

questions are of great interest for implementing a

cloud rendering system with the goal to render

clouds as realistic as possible.

mailto:juergen.treml@gmail.com
http://www.juergentreml.de/

- 2 -

Clouds are basically volumes of air containing a

significant amount of water in condensed form.

They form when rising water vapor cools down

with increasing height and finally condensates. This

is of course just a very basic view but enough for

our purpose of rendering them. In reality, the

factors influencing cloud formation, movement and

dissipation are quite complex and among the most

basic ones are temperature, pressure, humidity and

the ratio of condensation to evaporation in a volume

of air ((Wolke)). Whereas this is of interest for a

physics-based simulation of cloud dynamics, these

details are not relevant for just rendering clouds.

There, we are more interested in why and how we

see clouds.

Figure 1: Interaction of light with clouds

Clouds are characterized by various interactions

with light as Figure 1 illustrates. Incoming light

particles are scattered by the water droplets in

clouds. This scattering is a multiple anisotropic and

multi-directional scattering of ambient light, as well

as light from the sun or other celestial objects and

light of those objects reflected from the ground.

The fact that light particles may be and in fact are

scattered multiple times in an anisotropic way is

responsible for the bright appearance that clouds

quite often possess. Besides all, clouds of course do

also absorb light as it passes through them. Given

that one can now try to approximate and simulate

this behavior in order to create realistic virtual

clouds.

3. Virtual Clouds based on physical Models

3.1. Generating Clouds

A first and straight forward approach on generating

clouds would be to implement the physical and

meteorological models behind clouds, then model

and define your environment and finally get areas

with cloud coverage as an ad-hoc result of your

model. This is of course a quite complex approach

on the topic but in case you’re for example

planning to implement a complex simulation of

clouds and their dynamics later on in order to

animate your clouds, then you’re going to need all

the physics anyways, so why not also use it for

generating clouds. Going with a strictly physics

based implementation, you’ll have to account for

things like potential temperature of air parcels,

buoyant forces, environmental lapse rate, saturation

mixing ratio, thermodynamics, fluid flow, vorticity

confinement and water continuity as proposed in

(Harris, Baxter III, Scheuermann, & Lastra, 2003).

In case you don’t need an exact physical simulation

of your clouds and just want to have optically-

convincing clouds which may be even static, i.e.

don’t form, dissolve or flow in any way, you may

be better off with a computationally less expensive

approach. A good start for that is functional noise.

It is memory efficient and quite fast compared to

simulating the physics behind clouds. With clouds

being a natural phenomenon, 1/f-noise seems an

intuitive choice. With its stochastic distribution and

self-similarity it matches well the structures we can

see in nature, including clouds.

n

i
inini

yxByxN
1

)
2

1
,

2

1
(

2

1
),(

(1)

Formula (1) shows the basic structure of a 1/f-noise

function in two dimensions. With B being some

basis function, and n being the number of noise

octaves to generate, (1) accounts for scaling the

amplitude of each octave of noise reciprocally with

its frequency. Put simple, this means that large

variations in noise repeat much less frequently than

small variations. The base function B can be

anything, but for clouds a stochastically distributed

texture or pseudo-random generators seem to make

sense.

Examples and further information on functional

noise can be found in (Perlin Noise), (Perlin) and

(Krüger, 2006/07). (Perlin) also shows an example

of the use of functional noise for a 2D animated

cloud field. But consider that you can create

functional noise for an arbitrary number of

dimensions, which results in the fact that you can

easily use it to create a 3D density distribution for

clouds or even animate this in time using 4-

dimensional noise.

Last but not least a noise-based approach on

generating clouds can be combined with post-

editing methods to allow users, e.g. artists, to

control the distribution of clouds. A way to do so

- 3 -

might be similar to what Terragen1 does with

landscape modeling, i.e. providing the user with

some kind of a brush to flatten or heighten the

generated noise in certain regions. This way, an

artist could specify regions where more clouds are

present and regions where there are less or (almost)

no clouds.

3.2. Rendering Clouds using Volume

Rendering Techniques

3.2.1. The Volume Rendering Integral

Now that we have a 3-dimensional density

distribution of clouds in the air, we can start

rendering clouds. Given this form of underlying

data, volume rendering appears to be a native way

to display it.

Starting from our model of light travelling through

clouds and interacting with the water droplets in a

cloud, we can try to compute the amount of light

which reaches the viewer looking at that cloud

calculating the absorption of light as it travels

through the cloud.

Figure 2: Light travelling through a cloud and being

absorbed.

In mathematical terms we can describe the intensity

I(x) of light exiting the cloud in respect to the initial

intensity I(x0) entering into the cloud as follows:

),(

0
0)()(

xx
exIxI

(2)

Where τ is the optical depth of the medium and

defined as:

2

1

)(),(21

x

x

dxxxx

(3)

Here, κ describes the absorption of light at a certain

point in the cloud.

1 http://www.planetside.co.uk/terragen/

As clouds do not just absorb light but light is also

scattered within clouds, we’re going to account for

this by assuming that particles in a cloud can also

emit light.

Figure 3: Cloud particles absorbing as well as emitting

light.

This very simple model of course just accounts for

single scattering of light in forward direction but

will serve as a first start. Coming to the

mathematical notation, our volume rendering

integral changes as follows:

x

x

xxxx
dxexqexIxI

0

0 ')'()()(),'(),(

0

(4)

In this case, q defines the initial intensity of light

emitted by a particle at a certain point in the cloud

and the rest of the term accounts for the attenuation

of the light emitted at a certain point while it

‘travels’ through the rest of the cloud.

So now that we have the equations to describe light

travelling through clouds (we’ll leave multiple

scattering for the next chapters) we could try to

implement a cloud rendering engine. Unfortunately

there is no closed form for these equations.

Nevertheless we can try to approximate those

integrals by discrete sums, which lead to two quite

basic methods of volume rendering.

3.2.2. Direct Volume Rendering: Raycasting

and Splatting

Let me start with the most intuitive way of direct

volume rendering: Raycasting. This is a so called

backward volume rendering technique which means

we start from the image plane and go pixel by pixel

shooting an imaginative ray through our volume.

Along each ray, we’re going to accumulate the

density at discrete intervals. As our ray is unlikely

to hit the voxel center at the chosen intervals, we’ll

have to decide what to do in this case. We could

just take the value of the nearest voxel or we could

interpolate the value from the values of the

neighboring voxels, e.g. using trilinear

interpolation. Reaching the backside of our volume

dataset, we finally know how much light from

- 4 -

behind the volume dataset reaches the image plane

at this pixel. We do this for all pixels in the image

plane we finally get a rendered image of our

volume. There is of course a lot of room for

improvements in this but I just tried to point out the

basic idea behind this technique. (Westermann,

2006/07) describes this in more detail.

Instead of going pixel by pixel on the image plane,

shooting rays through the volume, we can also try

to do this the other way round, which leads us to

what is called splatting. If raycasting is backward

volume rendering, this would be forward volume

rendering now. This time, instead of going pixel by

pixel on the image plane, we’ll start from our

volume dataset and go voxel by voxel, trying to

‘splat’ each voxel on the image plane.

That said, a voxel will of course not influence just

one pixel but several pixels. Therefore, a quite

common way of projecting voxel onto the image

plain is using a Gaussian kernel which is illustrated

by the following figure.

Figure 4: Projecting a voxel on the image plane using a

Gaussian kernel

An example for this method used in cloud rendering

is (Dobashi, Kaneda, Yamashita, Okita, & Nishita,

2000). Given a grid of voxels representing a

discrete density distribution (of clouds), for each

cloud, they render a 2D billboard of the cloud by

looping through all voxels and projecting them on

this 2D plane using a meatball function (instead of

a Gauss kernel). The basic reason for metaballs lies

in the fact that their effective radius can be

controlled more precisely than for a Gauss kernel.

(For further details about metaballs, please refer to

the original document). Given those billboards they

now render an image from the view of the sun,

orienting the billboards perpendicular towards the

sun and starting with the closes to the sun,

rendering them to the framebuffer (initialized to 1)

by multiplying the framebuffer pixel values with

the billboard pixels. Thus after each billboard, the

framebuffer represents a map of the amount of light

reaching from the sun through all billboards (i.e.

clouds) so far. For each billboard in the line one can

just retrieve the corresponding pixels from the

framebuffer and multiply them by the sunlight color

to get the color of this billboard / cloud, store it,

then render this billboard to the framebuffer and

repeat this for all remaining billboards. Besides the

the most important thing, i.e. the clouds’ shading,

this method also returns a shadowmap that can be

used for shadows cast on the ground by these

clouds later on. The rest of the rendering process is

pretty much straight forward. Orient the billboards

towards the viewer and render them to the

framebuffer starting with the closest by multiplying

the framebuffer color with the attenuation ration

from the billboard plus the colors calculated during

the last step.

As this method obviously accounts for single

scattering only, I’d like to conclude this chapter

about rendering clouds with a very short overview

on how to extend this method (and the volume

rendering integral) to account for multiple forward

scattering.

3.2.3. Extending the Volume Rendering

Integral: Multiple Forward Scattering

This chapter is intended to be just a short overview

of a method presented in (Harris & Lastra, Real-

Time Cloud Rendering, 2001). It extends the

volume rendering integral presented before to read

as follows:

Dp
dttdtt

dsesgeIPI

Dp

s

Dp

0

)()(

0),()(),(0

 (5)

The function in the second part of the sum is

defined as

4

')',()',,(),(dxIxrxg
(6)

This basically accounts for the facts that

 each particle does not only receive light

from outside the cloud / the sun but also

light scattered by other particles in the

cloud

 the amout of light received that way is a

function of the (spatial) angle (between

current particle, other particles and the sun

or light source)

 The exact characteristics are determined

by the bidirectional scattering distribution

- 5 -

function (BSDF) and the phase function

(e.g. Raleigh scattering)

As with each of these points one could fill pages of

text, I’d like to refer you to the original document

again for further mathematical details, but given the

above integral, we’re again in need for a discrete

approximization as there is no closed form.

(Harris & Lastra, Real-Time Cloud Rendering,

2001) basically solved it by making a series of

assumptions like

 Forward scattering accounts most for the

optical perception of clouds thus

restricting calculations to small angle

around the forward direction.

 Assuming the BSDF and various other

parts to be constant due to the small angle.

 Representing the light flow a small

number of light paths in discrete

directions.

With these and some more assumptions they

managed to get a discrete solution of the integral

which they then rendered using a enhanced /

extended version of the method presented in

(Dobashi, Kaneda, Yamashita, Okita, & Nishita,

2000).

3.3. Animating Clouds

As a conclusion of this chapter about clouds based

on realistic models, I’m going to give a short

overview on how to animate clouds.

Basically there are three different ways to achieve

cloud animation, the first two of which are pretty

obvious after what has been described in the

chapter before.

First of course, if you have a cloud rendering model

based on exact physics, i.e. implemented the

physical equations behind clouds, cloud creation,

movement and dissipation will be an ad-hoc result.

This should be quite obvious.

In case you used (Perlin) noise for cloud

generation, it might be a good idea to use that for

cloud animation, too. As mentioned in the chapter

about pseudo-random noise functions, these

functions support an arbitrary number of

dimensions. Thus, using 4-dimensional noise, one

gets a 3D density distribution of clouds in the air

plus a fourth dimension that could be used to

animate this density field in time.

Now we have an exact physical model and a

pseudo-random model, but as one might expect,

there’s a third way right in the middle between

those two, i.e. a way that’s not random but neither

physically exact, thus allowing a possibly faster

implementation and more control on the details.

This method would be using / building cellular

automata as described in (Dobashi, Kaneda,

Yamashita, Okita, & Nishita, 2000).

The automata consist of cells corresponding to the

voxels of our animation and carrying (binary) state

variables. All you need then is a set of transition

function describing the real world cloud behavior as

realistic as you’d like it to be. An exemplary

automaton can be found in the publication

mentioned above but as you can imagine, this

method is extremely scalable regarding its level of

detail and accuracy.

As a last note, I’d like to point out that using this

method you get a binary density distribution. So in

the end you’ll need some form of smoothening to

make the result optically pleasing. Nevertheless it’s

a not too complex way of realistically and

controllably animating clouds.

4. Virtual Clouds based on artistic Models

Having discussed some more or less physics-

oriented approaches on virtual clouds, I’d like to

present you with a last chapter now describing a

completely different method of achieving clouds.

It’s a method that is completely oriented towards

performance and artistic control and it’s the system

used in Microsoft Flight Simulator 2004 as

described in (Wang, 2003).

4.1. Generating Clouds

As mentioned above, artistic control is one of the

main factors of this method and therefore makes up

most of the part of creating clouds. This basically

means a human is going to manually design the

clouds supported by a computer at a few of the

steps.

First of all an artist will design the general shape of

the clouds using a 3D editor and a simple box

model. After that, a script will automatically fill

these boxes with randomly placed, textured point

sprites and do some filtering such as removing

sprites to close to other sprites and thus not

conveying to the optical perception of the cloud,

- 6 -

etc. This is done within the boundaries given by the

artist such as the density of the cloud or other

parameters.

Beside this the artist will specify the clouds color in

a more or less complex way. He will specify the

percentage of ambient color at certain times of the

day contributing to the cloud color. Additionally he

will specify vertical color levels and according

colors for each cloud plus group parts of the cloud

to be shaded similarly into so called shading

groups. Finally the artist will set directional colors

again for various times of the day.

As a last step, these clouds are exported into a file,

storing only the sprite centers and sizes plus the

coloring information specified by the artist.

4.2. Rendering Clouds

Rendering the clouds created before is now pretty

much straight forward.

The first step would obviously be loading the cloud

data from hard disk into memory. Now in each

rendering pass one would render quads around the

sprite centers according to the specified sizes and

map textures to those quads according to the type of

cloud. To improve naturalism and variety these

textures are randomly rotated in the quad plane.

Next, the quads are rotated perpendicular towards

the camera.

The next step is to calculate the quads’ shadings

which is a function of the angle between their

center point, the according shading group’s center

and the sun and furthermore takes into account the

color levels specified by the artist described in the

chapter before, interpolating between the discrete

levels given. Last but not least, the quads will be

rendered to the frame buffer.

For any details on the calculation of the quads’

shadings, I’d like to refer you to the original paper

as this would lead to far now. Nevertheless, the

short summary gives you an impression on how few

calculations need to be done during a rendering

past. It clearly shows that most of the work has

been done in the step before.

4.3. Animating Clouds

In (Wang, 2003)’s system of rendering clouds there

actually isn’t very much animation being done as

there is no simulation of cloud movement.

Nevertheless she presents a quite simple approach

on how cloud formation and dissipation can be

achieved.

Cloud dissipation, as she describes, can be achieved

by slowly increasing transparency on the clouds. To

achieve optically convincing results, one would

start increasing transparency on the edge particles

of a cloud first, the doing the same for the cloud’s

core, so that the clouds less dense outer parts

dissolve before the remaining core finally

dissipates, too.

As one might already guess, cloud formation is

exactly the same done just in opposite direction.

5. Conclusion

In this document I’ve basically presented two

different types of cloud rendering systems. One

being based on physical models trying to provide

maximum accuracy and the other one trying to give

you as much artistic control about the clouds’

appearance as possible together with requiring only

a minimum amount of CPU / GPU power. I’ve also

presented ways to create or generate and animate

clouds for both of the two systems.

There is clearly no such thing as ‘the best’ among

those systems. Which one you use depends on the

purpose you need it for, the time one wants to

spend in development as well as accuracy and

performance requirements. All of the systems

described have different qualities, all have their

deficits such as not accounting for single or

multiple scattering of light, demanding high

performance or showing optically irritating

appearances in their results. All of those methods

also leave room for improvements such as using

impostors, making better approximizations or

making use of new developments in the hardware

sector.

Last but not least, all those systems are not even

exclusive. Besides a few combination that really

don’t make sense, there’s the possibility of mixing

some of the approaches described in this document

to some hybrid solution on rendering clouds

combining various features of both sides. And

there’s also aspects not covered by this document

such as shafts of light and ground shadows that may

also influence the choice for one system or another.

So finally it’s up to everyone himself to determine

which are the factors that count and which are

negligible for his needs.

- 7 -

Screenshots

Microsoft Flight Simulator 2004

Microsoft Flight Simulator X

SkyWorks

- 8 -

References

Dobashi, Y., Kaneda, K., Yamashita, H., Okita, T.,

& Nishita, T. (2000). A Simple. Efficient Method

for Realistic Animation of Clouds. SIGGRAPH '00

(pp. 19-28). ACM Press.

Harris, M. J., & Lastra, A. (2001). Real-Time

Cloud Rendering. Eurographics 2001, (pp. 76-84).

Harris, M. J., Baxter III, W. V., Scheuermann, T.,

& Lastra, A. (2003). Simulation of Cloud Dynamics

on Graphics Hardware. Graphics Hardware 2003.

Krüger, J. (2006/07). Interactive Terrain Synthesis.

Image Synthesis. Technische Universität München.

Nishita, T., Dobashi, Y., & Nakamae, E. (1996).

Display of Clouds Taking into Account Multiple

Anisotropic Scattering and Sky Light. SIGGRAPH

'96, (pp. 379-386).

Perlin Noise. (n.d.). Retrieved 11 13, 2007, from

The good-looking textured light-sourced bouncy

fun smart and stretchy page:

http://freespace.virgin.net/hugo.elias/models/m_per

lin.htm

Perlin, K. (s.f.). Making Noise. Recuperado el 26 de

11 de 2007, de Noise Machine:

http://www.noisemachine.com/talk1/

Westermann, P. D. (2006/07). Direct Volume

Rendering. Scientific Visualization. München:

Technische Universität München.

Wolke. (s.f.). Recuperado el 26 de 11 de 2007, de

Wikipedia: http://de.wikipedia.org/wiki/Wolke

