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Abstract 

This paper is to give a short summary on the topics covered by a talk given during the course ‘Game Design’ at 

the Technical University of Munich. Among the topics is an overview about clouds in the real world, what they 

are and why we can see them as well as two different approaches on rendering and displaying clouds on a 

computer. The first one of these approaches is based on physical modeling and an automated, noise-based 

generation of clouds whereas the second one is a more artistic approach on creating and displaying clouds. Last 

but not least I will discuss, very shortly, a few ways how to animate clouds. Much unlike the title suggests, the 

topic of smoke is somewhat put aside, as rendering it is quite similar to rendering clouds whereas animation, 

where smoke differs from clouds, has not been part of the talk. 
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1. Introduction 

In the real world, we’re that much accustomed to 

seeing clouds, that quite often we don’t even take 

much notice of them. When it comes to certain 

computers games, especially flight simulators and 

games which heavily rely on outdoor scenes, it’s 

just the opposite. We tend to pay quite some 

attention to the clouds in the sky, unfortunately not 

for their beautifulness but for their absence or, if 

present, usually poor quality. Today’s games are 

doing just fine as long as you’re busy enough 

keeping your aircraft under control and don’t find 

the time to enjoy the environment you see outside 

the aircraft’s windows, though one must not forget 

that things have improved a lot over the last years 

with the potential of GPUs steadily increasing. Still, 

so far, there seems to be no perfect or at least 

optically totally convincing way to render clouds 

but there are different and promising approaches 

that do achieve good quality. 

Basically there are two different sides where these 

approaches come from. One is to try to 

approximate, as good as possible (or necessary), the 

physical principles and mathematical equations 

behind clouds. Doing so seems quite straight 

forward and by definition, if approximated just well 

enough, should be the most precise and convincing 

way to simulate and display clouds, just right for, 

e.g. meteorological simulations and scientific 

studies. Nevertheless, for a game this doesn’t have 

to be the preferred way to achieve clouds. For a 

game, usually you need optically convincing 

clouds, or in other words, clouds that just look 

good. They don’t necessarily have to be physically 

correct, and in fact quite often they’re not. Instead 

you’re worried about your framerate, i.e. how fast 

your clouds can be rendered and the game designer 

at the desk next to you expects you to give him as 

much freedom as possible in influencing the 

appearance of the clouds to be seen in the game. A 

physically exact simulation might not be the best 

way to achieve those two goals. 

For this, in the following, after a short paragraph 

about clouds in the ‘real’ world, I’m going to 

present some of the basics and a few examples 

behind each of the two approaches. I’m going to get 

into cloud generation as well as cloud rendering 

and, in short, also into the animation of clouds. But 

first of all, we should get an idea of what exactly 

clouds are. 

2. Clouds in the ‘real’ World 

What exactly are clouds? Obviously they’re usually 

more or less white spots in the sky. But that leaves 

two questions open: Where do they come from and 

why do we perceive them as ‘more or less white’, 

or in general, colored spots? Both of these 

questions are of great interest for implementing a 

cloud rendering system with the goal to render 

clouds as realistic as possible. 
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Clouds are basically volumes of air containing a 

significant amount of water in condensed form. 

They form when rising water vapor cools down 

with increasing height and finally condensates. This 

is of course just a very basic view but enough for 

our purpose of rendering them. In reality, the 

factors influencing cloud formation, movement and 

dissipation are quite complex and among the most 

basic ones are temperature, pressure, humidity and 

the ratio of condensation to evaporation in a volume 

of air ( (Wolke)). Whereas this is of interest for a 

physics-based simulation of cloud dynamics, these 

details are not relevant for just rendering clouds. 

There, we are more interested in why and how we 

see clouds. 

 

Figure 1: Interaction of light with clouds 

Clouds are characterized by various interactions 

with light as Figure 1 illustrates. Incoming light 

particles are scattered by the water droplets in 

clouds. This scattering is a multiple anisotropic and 

multi-directional scattering of ambient light, as well 

as light from the sun or other celestial objects and 

light of those objects reflected from the ground. 

The fact that light particles may be and in fact are 

scattered multiple times in an anisotropic way is 

responsible for the bright appearance that clouds 

quite often possess. Besides all, clouds of course do 

also absorb light as it passes through them. Given 

that one can now try to approximate and simulate 

this behavior in order to create realistic virtual 

clouds. 

3. Virtual Clouds based on physical Models 

3.1. Generating Clouds 

A first and straight forward approach on generating 

clouds would be to implement the physical and 

meteorological models behind clouds, then model 

and define your environment and finally get areas 

with cloud coverage as an ad-hoc result of your 

model. This is of course a quite complex approach 

on the topic but in case you’re for example 

planning to implement a complex simulation of 

clouds and their dynamics later on in order to 

animate your clouds, then you’re going to need all 

the physics anyways, so why not also use it for 

generating clouds. Going with a strictly physics 

based implementation, you’ll have to account for 

things like potential temperature of air parcels, 

buoyant forces, environmental lapse rate, saturation 

mixing ratio, thermodynamics, fluid flow, vorticity 

confinement and water continuity as proposed in 

(Harris, Baxter III, Scheuermann, & Lastra, 2003). 

In case you don’t need an exact physical simulation 

of your clouds and just want to have optically-

convincing clouds which may be even static, i.e. 

don’t form, dissolve or flow in any way, you may 

be better off with a computationally less expensive 

approach. A good start for that is functional noise. 

It is memory efficient and quite fast compared to 

simulating the physics behind clouds. With clouds 

being a natural phenomenon, 1/f-noise seems an 

intuitive choice. With its stochastic distribution and 

self-similarity it matches well the structures we can 

see in nature, including clouds. 
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Formula (1) shows the basic structure of a 1/f-noise 

function in two dimensions. With B being some 

basis function, and n being the number of noise 

octaves to generate, (1) accounts for scaling the 

amplitude of each octave of noise reciprocally with 

its frequency. Put simple, this means that large 

variations in noise repeat much less frequently than 

small variations. The base function B can be 

anything, but for clouds a stochastically distributed 

texture or pseudo-random generators seem to make 

sense. 

Examples and further information on functional 

noise can be found in (Perlin Noise), (Perlin) and 

(Krüger, 2006/07). (Perlin) also shows an example 

of the use of functional noise for a 2D animated 

cloud field. But consider that you can create 

functional noise for an arbitrary number of 

dimensions, which results in the fact that you can 

easily use it to create a 3D density distribution for 

clouds or even animate this in time using 4-

dimensional noise. 

Last but not least a noise-based approach on 

generating clouds can be combined with post-

editing methods to allow users, e.g. artists, to 

control the distribution of clouds. A way to do so 
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might be similar to what Terragen1 does with 

landscape modeling, i.e. providing the user with 

some kind of a brush to flatten or heighten the 

generated noise in certain regions. This way, an 

artist could specify regions where more clouds are 

present and regions where there are less or (almost) 

no clouds. 

3.2. Rendering Clouds using Volume 

Rendering Techniques 

3.2.1. The Volume Rendering Integral 

Now that we have a 3-dimensional density 

distribution of clouds in the air, we can start 

rendering clouds. Given this form of underlying 

data, volume rendering appears to be a native way 

to display it. 

Starting from our model of light travelling through 

clouds and interacting with the water droplets in a 

cloud, we can try to compute the amount of light 

which reaches the viewer looking at that cloud 

calculating the absorption of light as it travels 

through the cloud. 

 

Figure 2: Light travelling through a cloud and being 

absorbed. 

In mathematical terms we can describe the intensity 

I(x) of light exiting the cloud in respect to the initial 

intensity I(x0) entering into the cloud as follows: 
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Where τ is the optical depth of the medium and 

defined as: 
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Here, κ describes the absorption of light at a certain 

point in the cloud. 

                                                           

1 http://www.planetside.co.uk/terragen/ 

As clouds do not just absorb light but light is also 

scattered within clouds, we’re going to account for 

this by assuming that particles in a cloud can also 

emit light. 

 

Figure 3: Cloud particles absorbing as well as emitting 

light. 

This very simple model of course just accounts for 

single scattering of light in forward direction but 

will serve as a first start. Coming to the 

mathematical notation, our volume rendering 

integral changes as follows: 
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In this case, q defines the initial intensity of light 

emitted by a particle at a certain point in the cloud 

and the rest of the term accounts for the attenuation 

of the light emitted at a certain point while it 

‘travels’ through the rest of the cloud. 

So now that we have the equations to describe light 

travelling through clouds (we’ll leave multiple 

scattering for the next chapters) we could try to 

implement a cloud rendering engine. Unfortunately 

there is no closed form for these equations. 

Nevertheless we can try to approximate those 

integrals by discrete sums, which lead to two quite 

basic methods of volume rendering. 

3.2.2. Direct Volume Rendering: Raycasting 

and Splatting 

Let me start with the most intuitive way of direct 

volume rendering: Raycasting. This is a so called 

backward volume rendering technique which means 

we start from the image plane and go pixel by pixel 

shooting an imaginative ray through our volume. 

Along each ray, we’re going to accumulate the 

density at discrete intervals. As our ray is unlikely 

to hit the voxel center at the chosen intervals, we’ll 

have to decide what to do in this case. We could 

just take the value of the nearest voxel or we could 

interpolate the value from the values of the 

neighboring voxels, e.g. using trilinear 

interpolation. Reaching the backside of our volume 

dataset, we finally know how much light from 
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behind the volume dataset reaches the image plane 

at this pixel. We do this for all pixels in the image 

plane we finally get a rendered image of our 

volume. There is of course a lot of room for 

improvements in this but I just tried to point out the 

basic idea behind this technique. (Westermann, 

2006/07) describes this in more detail. 

Instead of going pixel by pixel on the image plane, 

shooting rays through the volume, we can also try 

to do this the other way round, which leads us to 

what is called splatting. If raycasting is backward 

volume rendering, this would be forward volume 

rendering now. This time, instead of going pixel by 

pixel on the image plane, we’ll start from our 

volume dataset and go voxel by voxel, trying to 

‘splat’ each voxel on the image plane. 

That said, a voxel will of course not influence just 

one pixel but several pixels. Therefore, a quite 

common way of projecting voxel onto the image 

plain is using a Gaussian kernel which is illustrated 

by the following figure. 

 

Figure 4: Projecting a voxel on the image plane using a 

Gaussian kernel 

An example for this method used in cloud rendering 

is (Dobashi, Kaneda, Yamashita, Okita, & Nishita, 

2000). Given a grid of voxels representing a 

discrete density distribution (of clouds), for each 

cloud, they render a 2D billboard of the cloud by 

looping through all voxels and projecting them on 

this 2D plane using a meatball function (instead of 

a Gauss kernel). The basic reason for metaballs lies 

in the fact that their effective radius can be 

controlled more precisely than for a Gauss kernel. 

(For further details about metaballs, please refer to 

the original document). Given those billboards they 

now render an image from the view of the sun, 

orienting the billboards perpendicular towards the 

sun and starting with the closes to the sun, 

rendering them to the framebuffer (initialized to 1) 

by multiplying the framebuffer pixel values with 

the billboard pixels. Thus after each billboard, the 

framebuffer represents a map of the amount of light 

reaching from the sun through all billboards (i.e. 

clouds) so far. For each billboard in the line one can 

just retrieve the corresponding pixels from the 

framebuffer and multiply them by the sunlight color 

to get the color of this billboard / cloud, store it, 

then render this billboard to the framebuffer and 

repeat this for all remaining billboards. Besides the 

the most important thing, i.e. the clouds’ shading, 

this method also returns a shadowmap that can be 

used for shadows cast on the ground by these 

clouds later on. The rest of the rendering process is 

pretty much straight forward. Orient the billboards 

towards the viewer and render them to the 

framebuffer starting with the closest by multiplying 

the framebuffer color with the attenuation ration 

from the billboard plus the colors calculated during 

the last step.  

As this method obviously accounts for single 

scattering only, I’d like to conclude this chapter 

about rendering clouds with a very short overview 

on how to extend this method (and the volume 

rendering integral) to account for multiple forward 

scattering. 

3.2.3. Extending the Volume Rendering 

Integral: Multiple Forward Scattering 

This chapter is intended to be just a short overview 

of a method presented in (Harris & Lastra, Real-

Time Cloud Rendering, 2001). It extends the 

volume rendering integral presented before to read 

as follows: 
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The function in the second part of the sum is 

defined as 
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This basically accounts for the facts that 

 each particle does not only receive light 

from outside the cloud / the sun but also 

light scattered by other particles in the 

cloud 

 the amout of light received that way is a 

function of the (spatial) angle (between 

current particle, other particles and the sun 

or light source) 

 The exact characteristics are determined 

by the bidirectional scattering distribution 
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function (BSDF) and the phase function 

(e.g. Raleigh scattering) 

As with each of these points one could fill pages of 

text, I’d like to refer you to the original document 

again for further mathematical details, but given the 

above integral, we’re again in need for a discrete 

approximization as there is no closed form. 

(Harris & Lastra, Real-Time Cloud Rendering, 

2001) basically solved it by making a series of 

assumptions like 

 Forward scattering accounts most for the 

optical perception of clouds thus 

restricting calculations to small angle 

around the forward direction. 

 Assuming the BSDF and various other 

parts to be constant due to the small angle. 

 Representing the light flow a small 

number of light paths in discrete 

directions. 

With these and some more assumptions they 

managed to get a discrete solution of the integral 

which they then rendered using a enhanced / 

extended version of the method presented in 

(Dobashi, Kaneda, Yamashita, Okita, & Nishita, 

2000). 

3.3. Animating Clouds 

As a conclusion of this chapter about clouds based 

on realistic models, I’m going to give a short 

overview on how to animate clouds. 

Basically there are three different ways to achieve 

cloud animation, the first two of which are pretty 

obvious after what has been described in the 

chapter before. 

First of course, if you have a cloud rendering model 

based on exact physics, i.e. implemented the 

physical equations behind clouds, cloud creation, 

movement and dissipation will be an ad-hoc result. 

This should be quite obvious. 

In case you used (Perlin) noise for cloud 

generation, it might be a good idea to use that for 

cloud animation, too. As mentioned in the chapter 

about pseudo-random noise functions, these 

functions support an arbitrary number of 

dimensions. Thus, using 4-dimensional noise, one 

gets a 3D density distribution of clouds in the air 

plus a fourth dimension that could be used to 

animate this density field in time. 

Now we have an exact physical model and a 

pseudo-random model, but as one might expect, 

there’s a third way right in the middle between 

those two, i.e. a way that’s not random but neither 

physically exact, thus allowing a possibly faster 

implementation and more control on the details. 

This method would be using / building cellular 

automata as described in (Dobashi, Kaneda, 

Yamashita, Okita, & Nishita, 2000). 

The automata consist of cells corresponding to the 

voxels of our animation and carrying (binary) state 

variables. All you need then is a set of transition 

function describing the real world cloud behavior as 

realistic as you’d like it to be. An exemplary 

automaton can be found in the publication 

mentioned above but as you can imagine, this 

method is extremely scalable regarding its level of 

detail and accuracy. 

As a last note, I’d like to point out that using this 

method you get a binary density distribution. So in 

the end you’ll need some form of smoothening to 

make the result optically pleasing. Nevertheless it’s 

a not too complex way of realistically and 

controllably animating clouds. 

4. Virtual Clouds based on artistic Models 

Having discussed some more or less physics-

oriented approaches on virtual clouds, I’d like to 

present you with a last chapter now describing a 

completely different method of achieving clouds. 

It’s a method that is completely oriented towards 

performance and artistic control and it’s the system 

used in Microsoft Flight Simulator 2004 as 

described in (Wang, 2003). 

4.1. Generating Clouds 

As mentioned above, artistic control is one of the 

main factors of this method and therefore makes up 

most of the part of creating clouds. This basically 

means a human is going to manually design the 

clouds supported by a computer at a few of the 

steps. 

First of all an artist will design the general shape of 

the clouds using a 3D editor and a simple box 

model. After that, a script will automatically fill 

these boxes with randomly placed, textured point 

sprites and do some filtering such as removing 

sprites to close to other sprites and thus not 

conveying to the optical perception of the cloud, 
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etc. This is done within the boundaries given by the 

artist such as the density of the cloud or other 

parameters. 

Beside this the artist will specify the clouds color in 

a more or less complex way. He will specify the 

percentage of ambient color at certain times of the 

day contributing to the cloud color. Additionally he 

will specify vertical color levels and according 

colors for each cloud plus group parts of the cloud 

to be shaded similarly into so called shading 

groups. Finally the artist will set directional colors 

again for various times of the day. 

As a last step, these clouds are exported into a file, 

storing only the sprite centers and sizes plus the 

coloring information specified by the artist. 

4.2. Rendering Clouds 

Rendering the clouds created before is now pretty 

much straight forward. 

The first step would obviously be loading the cloud 

data from hard disk into memory. Now in each 

rendering pass one would render quads around the 

sprite centers according to the specified sizes and 

map textures to those quads according to the type of 

cloud. To improve naturalism and variety these 

textures are randomly rotated in the quad plane. 

Next, the quads are rotated perpendicular towards 

the camera. 

The next step is to calculate the quads’ shadings 

which is a function of the angle between their 

center point, the according shading group’s center 

and the sun and furthermore takes into account the 

color levels specified by the artist described in the 

chapter before, interpolating between the discrete 

levels given. Last but not least, the quads will be 

rendered to the frame buffer. 

For any details on the calculation of the quads’ 

shadings, I’d like to refer you to the original paper 

as this would lead to far now. Nevertheless, the 

short summary gives you an impression on how few 

calculations need to be done during a rendering 

past. It clearly shows that most of the work has 

been done in the step before. 

4.3. Animating Clouds 

In (Wang, 2003)’s system of rendering clouds there 

actually isn’t very much animation being done as 

there is no simulation of cloud movement. 

Nevertheless she presents a quite simple approach 

on how cloud formation and dissipation can be 

achieved. 

Cloud dissipation, as she describes, can be achieved 

by slowly increasing transparency on the clouds. To 

achieve optically convincing results, one would 

start increasing transparency on the edge particles 

of a cloud first, the doing the same for the cloud’s 

core, so that the clouds less dense outer parts 

dissolve before the remaining core finally 

dissipates, too. 

As one might already guess, cloud formation is 

exactly the same done just in opposite direction. 

5. Conclusion 

In this document I’ve basically presented two 

different types of cloud rendering systems. One 

being based on physical models trying to provide 

maximum accuracy and the other one trying to give 

you as much artistic control about the clouds’ 

appearance as possible together with requiring only 

a minimum amount of CPU / GPU power. I’ve also 

presented ways to create or generate and animate 

clouds for both of the two systems. 

There is clearly no such thing as ‘the best’ among 

those systems. Which one you use depends on the 

purpose you need it for, the time one wants to 

spend in development as well as accuracy and 

performance requirements. All of the systems 

described have different qualities, all have their 

deficits such as not accounting for single or 

multiple scattering of light, demanding high 

performance or showing optically irritating 

appearances in their results. All of those methods 

also leave room for improvements such as using 

impostors, making better approximizations or 

making use of new developments in the hardware 

sector. 

Last but not least, all those systems are not even 

exclusive. Besides a few combination that really 

don’t make sense, there’s the possibility of mixing 

some of the approaches described in this document 

to some hybrid solution on rendering clouds 

combining various features of both sides. And 

there’s also aspects not covered by this document 

such as shafts of light and ground shadows that may 

also influence the choice for one system or another. 

So finally it’s up to everyone himself to determine 

which are the factors that count and which are 

negligible for his needs. 
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Screenshots 

Microsoft Flight Simulator 2004 

 

 

 

 

Microsoft Flight Simulator X 

 

 

 

 

 

 

 

SkyWorks 
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